Nested Square Root Sum (And Triangular Numbers)

Algebra Level 5

The value of k = 1 2015 T k + 1 8 T k \sum_{k=1}^{2015} \sqrt{\sqrt{T_k+\dfrac{1}{8}}-\sqrt{T_k}} where T k T_k is the k k th triangular number, can be expressed as p q r \sqrt{\sqrt{\dfrac{p}{q}}-\sqrt{r}} for positive integers p , q , r p,q,r and gcd ( p , q ) = 1 \gcd(p,q) = 1 . Find the last three digits of p + q + r p+q+r .


The answer is 305.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Daniel Liu
Apr 16, 2015

k = 1 2015 T k + 1 8 T k = k = 1 2015 k ( k + 1 ) 2 + 1 8 k ( k + 1 ) 2 = 1 2 4 k = 1 2015 k ( k + 1 ) + 1 4 k ( k + 1 ) = 1 2 4 k = 1 2015 k + 1 2 k ( k + 1 ) = 1 2 4 k = 1 2015 ( k + 1 2 k 2 ) 2 = 1 2 4 k = 1 2015 k + 1 2 k 2 = 1 2 4 ( 1008 1 2 ) = 1 2 4 ( 1008 1 2 ) 2 = 1 2 4 2017 2 2016 = 1 2 ( 2017 2 2016 ) = 2017 2 2 1008 = 201 7 2 8 1008 \begin{aligned} \sum_{k=1}^{2015} \sqrt{\sqrt{T_k+\dfrac{1}{8}}-\sqrt{T_k}} &= \sum_{k=1}^{2015} \sqrt{\sqrt{\dfrac{k(k+1)}{2}+\dfrac{1}{8}}-\sqrt{\dfrac{k(k+1)}{2}}} \\ &= \dfrac{1}{\sqrt[4]{2}}\sum_{k=1}^{2015} \sqrt{\sqrt{k(k+1)+\dfrac{1}{4}}-\sqrt{k(k+1)}} \\ &= \dfrac{1}{\sqrt[4]{2}}\sum_{k=1}^{2015} \sqrt{k+\dfrac{1}{2}-\sqrt{k(k+1)}} \\ &= \dfrac{1}{\sqrt[4]{2}}\sum_{k=1}^{2015} \sqrt{\left(\sqrt{\dfrac{k+1}{2}}-\sqrt{\dfrac{k}{2}}\right)^2} \\ &= \dfrac{1}{\sqrt[4]{2}}\sum_{k=1}^{2015} \sqrt{\dfrac{k+1}{2}}-\sqrt{\dfrac{k}{2}}\\ &= \dfrac{1}{\sqrt[4]{2}}\left(\sqrt{1008}-\sqrt{\dfrac{1}{2}}\right)\\ &= \dfrac{1}{\sqrt[4]{2}}\sqrt{\left(\sqrt{1008}-\sqrt{\dfrac{1}{2}}\right)^2}\\ &= \dfrac{1}{\sqrt[4]{2}}\sqrt{\dfrac{2017}{2}-\sqrt{2016}}\\ &= \sqrt{\dfrac{1}{\sqrt{2}}\left(\dfrac{2017}{2}-\sqrt{2016}\right)}\\ &= \sqrt{\dfrac{2017}{2\sqrt{2}}-\sqrt{1008}}\\ &= \sqrt{\sqrt{\dfrac{2017^2}{8}}-\sqrt{1008}} \end{aligned}

Thus ( p , q , r ) = ( 201 7 2 , 8 , 1008 ) (p,q,r)=\left(2017^2, 8, 1008\right) and p + q + r 1 7 2 + 8 + 8 305 ( m o d 1000 ) p+q+r\equiv 17^2+8+8\equiv \boxed{305}\pmod{1000}

Moderator note:

Nicely done! Can you generalize k = 1 N T k + 1 8 T k \displaystyle \sum_{k=1}^{N} \sqrt{\sqrt{T_k+\dfrac{1}{8}}-\sqrt{T_k}} ? Prove that for the summation to be a telescoping series, you couldn't replace the number 8 8 with any other integer.

same method.

Aareyan Manzoor - 6 years, 1 month ago
Trevor Arashiro
Apr 30, 2015

Calvin Lin these are the generalizations you asked Daniel for.

( i ) k = 1 a T k + 1 8 T k a + 1 1 2 3 4 (i) ~\displaystyle \sum_{k=1}^{a} \sqrt{\sqrt{T_k+\dfrac{1}{8}}-\sqrt{T_k}} \Longrightarrow \dfrac{\sqrt{a+1}-1}{\sqrt[4]{2^3}}

( i i ) k = 1 a T k + 1 b T k k = 1 a b n 2 + b 2 b + 2 2 b T k (ii) ~\displaystyle \sum_{k=1}^{a} \sqrt{\sqrt{T_k+\dfrac{1}{b}}-\sqrt{T_k}} \Longrightarrow \displaystyle \sum_{k=1}^{a} \sqrt{\sqrt{\dfrac{bn^2+b}{2b}+\dfrac{2}{2b}}-\sqrt{T_k}}

k = 1 a b n 2 + b n 2 b + 2 2 b T k \displaystyle \sum_{k=1}^{a} \sqrt{\sqrt{\dfrac{bn^2+bn}{2b}+\dfrac{2}{2b}}-\sqrt{T_k}}

This tells us that b must be even. Thus we can rewrite b = 2 k b=2k

k = 1 a k n 2 + k n b + 1 b T k k n 2 + k n + 1 \displaystyle \sum_{k=1}^{a} \sqrt{\sqrt{\dfrac{kn^2+kn}{b}+\dfrac{1}{b}}-\sqrt{T_k}} \Longrightarrow kn^2+kn+1 is a perfect square because if it's not.... It's just ugly.

We can rewrite this as a perfect square of the form ( t n + s ) 2 (tn+s)^2 . Thus we have s 2 = 1 s = 1 s^2=1\rightarrow s=1 . Logic tells us that s is greater than 0. Finally, we have

2 t = k 2t=k and t 2 = k t^2=k

Clearly, the only solution here is t = 2 , k = 4 t=2,~k=4 . Thus since b = 2 k b = 8 b=2k\Rightarrow b=8

A little iffy on the rigor side, but thanks! (BTW I don't see a way to make it more rigorous; I don't even see a rigorous way to prove that something telescopes or doesn't.)

Daniel Liu - 6 years, 1 month ago

Log in to reply

You mean the problem is rigorous or my solution is?

Cuz if my solution can be shortened then I'd love to see how to prove it more shortly

Trevor Arashiro - 6 years, 1 month ago

Log in to reply

I mean that your solution seems not that rigorous, but I don't know a better method.

Daniel Liu - 6 years, 1 month ago

Log in to reply

@Daniel Liu Mm, well, I guess I could have skipped the substitution for 2k step. But that's about it.

Trevor Arashiro - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...