Nested Summation

Algebra Level 3

n = 1 2016 1 + 2 + 3 + + n 1 3 + 2 3 + 3 3 + + n 3 \sum _{ n=1 }^{ 2016 }{ \dfrac { 1+2+3+\dots +n }{ { 1 }^{ 3 }+{ 2 }^{ 3 }+{ 3 }^{ 3 }+\dots +{ n }^{ 3 } } }

If the value of this sum is A B \frac{A}{B} , where A A and B B are coprime positive integers, find A + B . A + B.


The answer is 6049.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Arulx Z
Feb 27, 2016

By referencing sum of n, n², or n³ , we have

1 + 2 + 3 + + n = n ( n + 1 ) 2 1 3 + 2 3 + 3 3 + + n 3 = n 2 ( n + 1 ) 2 4 = ( n ( n + 1 ) 2 ) 2 \begin{aligned} 1 + 2 + 3 + \cdots + n &= &\dfrac {n(n+1)}2 \\ 1^3 + 2^3 +3^3+ \cdots + n^3 &= &\dfrac {n^2 (n+1)^2}4 = \left( \dfrac{n(n+1)} 2\right)^2 \\ \end{aligned}

Thus, taking the ratio of the two expressions gives

1 + 2 + 3 + + n 1 3 + 2 3 + 3 3 + + n 3 = n ( n + 1 ) 2 ÷ ( n ( n + 1 ) 2 ) 2 = n ( n + 1 ) 2 ÷ ( n ( n + 1 ) 2 ) 2 = 1 ÷ ( n ( n + 1 ) 2 ) = 2 n ( n + 1 ) \begin{aligned} \dfrac{1 + 2 + 3 + \cdots + n} {1^3 + 2^3 +3^3+ \cdots + n^3} & =& \dfrac {n(n+1)}2 \div \left( \dfrac{n(n+1)} 2\right)^2 \\ &=& \cancel{\dfrac {n(n+1)}2} \div \left( \dfrac{n(n+1)} 2\right)^{\cancel2} \\ &=& 1 \div \left( \dfrac{n(n+1)} 2\right) \\ &=& \dfrac{2}{n(n+1)} \end{aligned}

By partial fractions - cover up rule , we have 2 n ( n + 1 ) = 2 n 2 n + 1 \dfrac{2}{n(n+1)} = \dfrac2n - \dfrac2{n+1} .

Now let's evaluate the sum!

n = 1 2016 1 + 2 + 3 + + n 1 3 + 2 3 + 3 3 + + n 3 = n = 1 2016 2 n ( n + 1 ) = n = 1 2016 ( 2 n 2 n + 1 ) = 2 n = 1 2016 ( 1 n 1 n + 1 ) = 2 [ ( 1 1 1 2 ) + ( 1 2 1 3 ) + ( 1 3 1 4 ) + + ( 1 2015 1 2016 ) + ( 1 2016 1 2017 ) ] = 2 [ ( 1 1 1 2 ) + ( 1 2 1 3 ) + ( 1 3 1 4 ) + + ( 1 2015 1 2016 ) + ( 1 2016 1 2017 ) ] = 2 ( 1 1 2017 ) = 2 ( 2016 2017 ) = 4032 2017 \begin{aligned} && \sum_{n=1}^{2016} \dfrac{1 + 2 + 3 + \cdots + n} {1^3 + 2^3 +3^3+ \cdots + n^3} \\ &=& \sum_{n=1}^{2016} \dfrac{2}{n(n+1)} \\ &=& \sum_{n=1}^{2016} \left( \dfrac2n - \dfrac2{n+1} \right) \\ &=& 2 \sum_{n=1}^{2016} \left( \dfrac 1n - \dfrac1{n+1} \right) \\ &=& 2 \left [ \left( \dfrac11 - {\dfrac12} \right) + \left( {\dfrac12} - {\dfrac13} \right) + \left( {\dfrac13} -{\dfrac14} \right) + \cdots +\left( {\dfrac1{2015}} -{\dfrac1{2016}} \right) + \left({\dfrac1{2016}} - \dfrac1{2017} \right) \right ] \\ &=& 2 \left [ \left( \dfrac11 - \xcancel{\dfrac12} \right) + \left( \xcancel{\dfrac12} - \xcancel{\dfrac13} \right) + \left( \xcancel{\dfrac13} - \xcancel{\dfrac14} \right) + \cdots +\left( \xcancel{\dfrac1{2015}} - \xcancel{\dfrac1{2016}} \right) + \left( \xcancel{\dfrac1{2016}} - \dfrac1{2017} \right) \right ] \\ &=& 2 \left( 1 - \dfrac1{2017} \right) = 2 \left( \dfrac{2016}{2017} \right) = \dfrac{4032}{2017} \\ \end{aligned}

In the penultimate steps, the terms cancel out in pairs (this is known as a telescoping sum ).

Since the summation is equal to 4032 2017 \dfrac{4032}{2017} and the fraction is already stated in its lowest form, then A = 4032 , B = 2017 A + B = 6049 A = 4032, B= 2017\Rightarrow A+B= \boxed{6049} .

Moderator note:

Great explanation!

Bonus:( Slightly tougher ;-) lim n ( 1 2 + 2 2 + + n 2 ) ( 1 4 + 2 4 + + n 4 ) ( 1 7 + 2 7 + + n 7 ) = k + 1 15 \lim_{n\rightarrow\infty}\dfrac{(1^2+2^2+\cdots+n^2)(1^4+2^4+\cdots+n^4)}{(1^7+2^7+\cdots+n^7)}=\dfrac{k+1}{15} k = ? \color{#D61F06}{\large k=?}

Rishabh Jain - 5 years, 3 months ago

Log in to reply

Six. Hint : Apply riemann sums .

Pi Han Goh - 5 years, 3 months ago

Log in to reply

Yeah .. Exactly ( 0 1 x 2 d x ) ( 0 1 x 4 d x ) ( 0 1 x 7 d x ) \dfrac{(\int_0^1x^2 dx)(\int_0^1x^4 dx)}{(\int_0^1x^7 dx)} = ( 1 3 ) ( 1 5 ) ( 1 8 ) =\dfrac{(\frac 13)(\frac 15)}{(\frac 18)} = 8 15 k = 7 =\dfrac{8}{15}\implies k=\boxed 7

Rishabh Jain - 5 years, 3 months ago

Log in to reply

@Rishabh Jain Nope. You made a mistake. Try again, think about taking out a power from the denominator.

Pi Han Goh - 5 years, 3 months ago

Log in to reply

@Pi Han Goh Summation can be represented as: lim n 1 n ( ( r = 1 ( r n ) 2 ) ( r = 1 ( r n ) 4 ) r = 1 ( r n ) 7 ) \lim_{n\to \infty}\dfrac{1}{n}\left(\dfrac{\left(\displaystyle\sum_{r=1}^{\infty}\left(\frac rn\right)^2\right)\left(\displaystyle\sum_{r=1}^{\infty}\left(\frac rn\right)^4\right)}{\displaystyle\sum_{r=1}^{\infty}\left(\frac rn\right)^7 }\right) and hence the above form.. Isn't it right??

Rishabh Jain - 5 years, 3 months ago

Log in to reply

@Rishabh Jain (r/n)^6, and not (r/n)^7

Pi Han Goh - 5 years, 3 months ago

Log in to reply

@Pi Han Goh Then that 1 n \frac 1n will not come. And the required form will not be generated.!!

Rishabh Jain - 5 years, 3 months ago

Log in to reply

@Rishabh Jain Oh wait ...silly me. I thought of some other theorem and got messed up. Yup you're right! You should this as a problem!! =D

Pi Han Goh - 5 years, 3 months ago

Log in to reply

@Pi Han Goh Surely... I'll post it after modification and making it a bit scary ;-) ..(after my exams!!)

Rishabh Jain - 5 years, 3 months ago

@Pi Han Goh There's a typo in your comment :P

"You should post this as a problem!! =D"

Mehul Arora - 5 years, 3 months ago

Can you help me in this too?? lim n 1 n ln ( ( 2 n ) ! n n n ! ) \lim_{n\to\infty}\dfrac{1}{n}\ln\left(\dfrac{(2n)!}{n^nn!}\right) I wrote it as : lim n 1 n ln ( ( 2 n ) ( 2 n 1 ) ( 2 n 2 ) ( 2 n ( n 1 ) ) n n n n n times ) \lim_{n\to\infty}\dfrac{1}{n}\ln\left(\dfrac{(2n)(2n-1)(2n-2)\cdots(2n-(n-1))}{\underbrace{n\cdot n\cdot n\cdots n}_{\text{n times }}}\right) = lim n 1 n r = 0 n 1 ln ( 2 r n ) =\lim_{n\to\infty}\dfrac{1}{n}\displaystyle\sum_{r=0}^{n-1} \ln\left(2-\dfrac{r}{n}\right) = 0 1 ln ( 2 x ) d x =\int_{0}^1 \ln (2-x)\, dx = ln 4 1 =\ln4-1 Have I done correct or have I commited some mistake??

Rishabh Jain - 5 years, 2 months ago

Log in to reply

@Rishabh Jain Yes, your work is correct.

Tirthankar Mazumder - 1 year, 6 months ago

Those cross things made it look perfect.

Mehul Arora - 5 years, 3 months ago

Same way dude!!! An easy problem.

abc xyz - 5 years, 3 months ago

Is not the summation simply 1/2033136? So A +B = 2033137

Greg Grapsas - 4 years, 7 months ago

Log in to reply

Please elaborate

Arulx Z - 4 years, 7 months ago

Log in to reply

@Arulx Z I think Greg means you directly sub n=2016 into the simplified equation 2/n(n+1), which will give you 1/2033136. Why is that wrong?

Teng Chou Nathan Mar - 4 years, 2 months ago

Log in to reply

@Teng Chou Nathan Mar The answer is actually 2 1 2 + 2 2 3 + 2 3 4 + + 2 2016 2017 \frac{2}{1\cdot 2} + \frac{2}{2\cdot 3} + \frac{2}{3\cdot 4} + \dots + \frac{2}{2016 \cdot 2017} . So simply substituting 2016 won't help.

Arulx Z - 4 years, 2 months ago

Greg is right here . Arul don't you think the summation of this series will be less then one ? Denominator >> numerator . The part you did wrong was , you took summation (2÷(n)(n+1)) as the nth term and started added it , hence you got a number > 1

Aditya Dungrani - 1 year, 6 months ago

Great use of telescoping! I was fool enough to do the whole induction shenanigan.

Eduardo Gomes Bonilha Gonçalves - 3 years, 6 months ago

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
import numpy as np
from fractions import Fraction

sum_ = 0
sum_cubed = 0
X = 0.
denom_range = 100000

for i in range(1,2017):
    for j in range(1,i+1):
        sum_ += np.float64(j)
        sum_cubed += np.float64(j**3)
        #print sum_, sum_cubed
    X += np.float64(sum_/sum_cubed)
    sum_ = 0
    sum_cubed = 0

A = Fraction(X).limit_denominator(denom_range).numerator
B = Fraction(X).limit_denominator(denom_range).denominator 
print 'Summation = %s' %(Fraction(X).limit_denominator(denom_range))
print  'A + B = %d' % (A+B)

1
2
Summation = 4032/2017
A + B = 6049

Michael Fitzgerald - 3 years, 1 month ago
Richard Levine
Oct 21, 2016

The summation amounts to 1/1+(1+2)/(1+2)^2+(1+2+3)/(1+2+3)^2+...(1+2+3+...+n)/(1+2+3+...+n)^2 = 1+1/3+1/6+...+1/(n(n+1)/2). Notice that for increasing values of n there is a pattern in the sum: 1, 4/3, 6/4, 8/5, ..., 2n/(n+1). Therefore, the sum to n=2016 is 2(2016)/(2016+1) = 4032/2017. 4032+2017 = 6049.

The pattern I saw was 1, 4/3, 9/6, 16/10, ..., n^2/(1+2+...+n) which equals n^2/(n(n+1)/2) = 2n^2/(n(n+1) = 2n/(n+1)

Ashley Reavis - 3 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...