New-ton!

Algebra Level 3

If a + b + c = 1 \large a + b + c = 1 , a 2 + b 2 + c 2 = 9 \large a^2 + b^2 + c^2 = 9 and a 3 + b 3 + c 3 = 1 \large a^3 + b^3 + c^3 = 1 ,

Then 1 a + 1 b + 1 c = \large \frac{1}{a} + \frac{1}{b} + \frac{1}{c} =

This problem is a part of the sets - 3's & 4's & QuEsTiOnS .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Sakanksha Deo
Mar 16, 2015

We can solve this by using newton's sum rule,

Let,

S 1 = a + b + c S_1 = a + b + c

S 2 = a 2 + b 2 + c 2 S_2 = a^2 + b^2 + c^2

S 3 = a 3 + b 3 + c 3 S_3 = a^3 + b^3 + c^3

S 4 = a 4 + b 4 + c 4 S_4 = a^4 + b^4 + c^4

S 5 = a 5 + b 5 + c 5 S_5 = a^5 + b^5 + c^5

P 2 = a b + b c + a c P_2 = ab + bc + ac

P 3 = a b c P_3 = abc

Now,

According to newton's sum,

S 2 = S 1 2 2 P 2 P 2 = 4 S_2 = S_1^2 - 2P_2 \Rightarrow P_2 = -4

S 3 = S 1 S 2 P 2 S 1 + 3 P 3 P 3 = 4 S_3 = S_1 S_2 - P_2 S_1 + 3 P_3 \Rightarrow P_3 = - 4

Now,

1 a + 1 b + 1 c = a b + b c + a c a b c = P 2 P 3 = 4 4 \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{ ab + bc + ac }{ abc } = \frac{ P_2 }{ P_3 } = \frac{-4}{-4}

= 1 = \boxed{1}

Yups! Newton's sums rock!!!

A Former Brilliant Member - 6 years, 3 months ago

Log in to reply

Yup....... 😊

Sakanksha Deo - 6 years, 3 months ago

Can u pls explain newtons sum ??

Naman Kapoor - 6 years, 2 months ago

Log in to reply

Do you want to know the formula or its derivation ?

Sakanksha Deo - 6 years, 2 months ago

Log in to reply

I want to know the formula

Naman Kapoor - 6 years, 2 months ago

Log in to reply

@Naman Kapoor Look at this .

Sakanksha Deo - 6 years, 2 months ago
Ankit Kumar Jain
Mar 16, 2015

( a + b + c ) 2 = a 2 + b 2 + c 2 + 2 a b + 2 b c + 2 c a (a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca

a b + b c + c a = 4 \Rightarrow \boxed{ab + bc + ca = -4}

a 3 + b 3 + c 3 3 a b c = ( a + b + c ) ( a 2 + b 2 + c 2 a b b c c a ) a^{3} + b^{3} + c^{3} - 3abc = (a + b + c)(a^{2} + b^{2} + c^{2} - ab - bc - ca)

a b c = 4 \Rightarrow \boxed{abc = -4}

a b + b c + c a a b c = 1 a + 1 b + 1 c = 1 \Rightarrow \dfrac{ab + bc + ca}{abc} = \dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} = \boxed{1}

Andrea Palma
Mar 19, 2015

A longer proof, that ignores newton sums.

Write a , b , c a,b,c as the roots of a monic polinomyal of degree 3 3

( x a ) ( x b ) ( x c ) = x 3 ( a + b + c ) x 2 + ( a b + b c + c a ) x a b c (x-a)(x-b)(x-c) = x^3 - (a+b+c)x^2 + (ab + bc + ca)x - abc

Let's try to guess the coefficients α i \alpha_i of the x i x^i in the polinomial from our assumptions.

α 2 \alpha_2 is clearly -1.

For α 1 \alpha_1 use

( a + b + c ) 2 = ( a 2 + b 2 + c 2 ) + 2 α 1 (a+b+c)^2 = (a^2 + b^2 + c^2) + 2\alpha_1

and obtain α 1 = 4 \alpha_1 = - 4 .

For α 0 \alpha_0 note that

( a + b + c ) ( a 2 + b 2 + c 2 ) = (a+b+c)(a^2 + b^2 + c^2) =

= a 3 + b 3 + c 3 + ( a 2 b + a 2 c + b 2 a + b 2 c + c 2 a + c 2 b ) = a^3 + b^3 + c^3 + (a^2b + a^2c + b^2a +b^2c+ c^2a+ c^2b)

hence

( a 2 b + a 2 c + b 2 a + b 2 c + c 2 a + c 2 b ) = 8 (a^2b + a^2c + b^2a+b^2c+ c^2a+ c^2b) = 8 .

Then use

( a + b + c ) 3 = a 3 + b 3 + c 3 + 3 ( a 2 b + a 2 c + b 2 a + b 2 c + c 2 a + c 2 b ) + 6 a b c (a+b+c)^3 = a^3 + b^3 + c^3 + 3(a^2b + a^2c + b^2a+b^2c+ c^2a+ c^2b) + 6abc

and get

α 0 = 4 \alpha_0 = 4 .

Now the polinomyal is

x 3 x 2 4 x + 4 = ( x 2 4 ) ( x 1 ) = ( x 2 ) ( x 1 ) ( x + 2 ) x^3 - x^2 - 4x + 4 = (x^2 -4)(x-1) = (x-2)(x-1)(x+2)

and its roots are 2 , 1 , 2 -2, \ \ 1, \ \ 2

so the sum of their reciprocals is 1 1 .

Dipesh Shivrame
Mar 16, 2015

there should be c^2 Instead of c^3

Thank you.....edited

Sakanksha Deo - 6 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...