Newton is tired now!

Algebra Level 5

If a + b + c + d + e = 1 a + b + c + d + e = 1

a 2 + b 2 + c 2 + d 2 + e 2 = 1 a^2 + b^2 + c^2 + d^2 + e^2 = 1

a 3 + b 3 + c 3 + d 3 + e 3 = 2 a^3 + b^3 + c^3 + d^3 + e^3 = 2

a 4 + b 4 + c 4 + d 4 + e 4 = 3 a^4 + b^4 + c^4 + d^4 + e^4 = 3

a 5 + b 5 + c 5 + d 5 + e 5 = 5 a^5 + b^5 + c^5 + d^5 + e^5 = 5

then find the value of 30 ( a 7 + b 7 + c 7 + d 7 + e 7 ) 30(a^7 + b^7 + c^7 + d^7 + e^7)

This problem is inspired by many problems


The answer is 233.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let P n = a n + b n + c n + d n + e n , where n = 1 , 2 , 3... S 1 = a + b + c + d + e = P 1 S 2 = a b + a c + a d + a e + b c + + b d + b e + c d + c e + d e S 3 = a b c + a b d + a b e + a c d + a c e + a d e + b c d + b c e + b d e + c d e S 4 = a b c d + a b d e + a c d e + b c d e S 5 = a b c d e \begin{aligned} \text{Let } P_n & = a^n+b^n+c^n+d^n+e^n, \text{ where } n = 1,2,3... \\ S_1 & = a+b+c+d+e = P_1 \\ S_2 & = ab+ac+ad+ae+bc++bd+be+cd+ce+de \\ S_3 & = abc+abd+abe+acd+ace+ade+bcd+ bce+bde+cde \\ S_4 & = abcd+abde+acde+bcde \\ S_5 & = abcde \end{aligned}

Using Newton sums method, we have:

P k = { S 1 P k 1 S 2 P k 2 + S 3 P k 3 . . . ( 1 ) k 1 k S k for k 5 S 1 P k 1 S 2 P k 2 + S 3 P k 3 S 4 P k 4 + S 5 P k 5 for k > 5 P_k = \begin{cases} S_1P_{k-1}-S_2P_{k-2}+S_3P_{k-3}-...(-1)^{k-1}kS_k & \text{for } k \le 5 \\ S_1P_{k-1}-S_2P_{k-2}+S_3P_{k-3}-S_4P_{k-4}+S_5P_{k-5} & \text{for } k > 5 \end{cases}

Given P 1 = 1 , P 2 = 1 , P 3 = 2 , P 4 = 3 , P 5 = 5 P_1 = 1, P_2 = 1, P_3 = 2, P_4 = 3, P_5 = 5 , we find that S 1 = 1 , S 2 = 0 , S 3 = 1 3 , S 4 = 1 6 , S 5 = 3 10 S_1 = 1, S_2 = 0, S_3 = \frac{1}{3}, S_4 = - \frac{1}{6}, S_5 = \frac{3}{10} .

Using an Excel spreadsheet (see below) for ease of computation, we find that P 6 = 92 15 P_6 = \frac{92}{15} and P 7 = a 7 + b 7 + c 7 + d 7 + e 7 = 233 30 30 ( a 7 + b 7 + c 7 + d 7 + e 7 ) = 233 P_7 = a^7+b^7+c^7+d^7+e^7 = \frac{233}{30}\quad \Rightarrow 30(a^7+b^7+c^7+d^7+e^7) = \boxed{233}

Did the same way!!😀😀

Anurag Pandey - 4 years, 10 months ago

Perfect Solution!!

Dev Sharma - 5 years, 7 months ago

Log in to reply

Given the title and the fibonnaci series, I was expecting something other than Newton's Sums.

shaurya gupta - 5 years, 7 months ago

Log in to reply

Same, is there a differentt way of solving

Mardokay Mosazghi - 5 years, 6 months ago

Log in to reply

@Mardokay Mosazghi Of course, with 5 unknown and 5 equations, you can find out the values of a, b, c, d, e and f, but that will be difficult.

Chew-Seong Cheong - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...