No problem, Double Integral!

Calculus Level 5

If 0 sin 3 x x 3 d x = A \large \displaystyle \int_{0}^{\infty} \dfrac{\sin^3 x}{x^3} dx \ = \ A and 0 ( x sin x x 3 ) d x = m A n \large \displaystyle \int_{0}^{\infty} \left (\dfrac{x - \sin x}{x^3} \right ) dx \ = \ \dfrac{m A}{n} where m m and n n are positive relative coprimes, then what is m + n m+n ?.


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Apr 23, 2016

A = 0 sin 3 x x 3 d x As sin 3 x = 3 sin x 4 sin 3 x = 1 4 0 3 sin x sin 3 x x 3 d x = 1 8 [ 3 sin x sin 3 x x 2 ] 0 + 3 8 0 cos x cos 3 x x 2 d x = 3 8 [ cos x cos 3 x x ] 0 3 8 0 sin x 3 sin 3 x x d x = 3 8 0 sin x x d x + 9 8 0 sin 3 x 3 x d ( 3 x ) = 3 4 0 sin x x d x Dirichlet integral = 3 4 π 2 = 3 π 8 \begin{aligned} A & = \int_0^\infty \frac{\color{#3D99F6}{\sin^3 x}}{x^3}\, dx \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \small \color{#3D99F6}{\text{As }\sin 3x = 3 \sin x - 4 \sin^3 x} \\ & = \frac{1}{4} \int_0^\infty \frac{\color{#3D99F6}{3 \sin x - \sin 3x}}{x^3} \, dx \\ & = -\frac{1}{8} \left[\frac{3\sin x - \sin 3x}{x^2}\right]_0^\infty + \frac{3}{8} \int_0^\infty \frac{\cos x - \cos 3x}{x^2} dx \\ & = -\frac{3}{8} \left[\frac{\cos x - \cos 3x}{x}\right]_0^\infty - \frac{3}{8} \int_0^\infty \frac{\sin x - 3 \sin 3x}{x} dx \\ & = - \frac{3}{8} \int_0^\infty \frac{\sin x}{x} dx + \frac{9}{8} \int_0^\infty \frac{\sin \color{#3D99F6}{3x}}{\color{#3D99F6}{3x}} d(\color{#3D99F6}{3x}) \\ & = \frac{3}{4} \color{#3D99F6}{\int_0^\infty \frac{\sin x}{x} dx} \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \small \color{#3D99F6}{\text{Dirichlet integral}} \\ & = \frac{3}{4} \cdot{} \color{#3D99F6}{\frac{\pi}{2}} = \frac{3 \pi}{8} \end{aligned}

m A n = 0 x sin x x 3 d x Integration by parts = [ 2 x + sin x 2 x 2 + cos x 2 x ] 0 + 1 2 0 sin x x d x Dirichlet integral = 1 2 π 2 = π 4 \begin{aligned} \frac{mA}{n} & = \int_0^\infty \frac{x-\sin x}{x^3} \, dx \quad \quad \small \color{#3D99F6}{\text{Integration by parts}} \\ & = \left[- \frac{2}{x} + \frac{\sin x}{2x^2} + \frac{\cos x}{2x} \right]_0^\infty + \frac{1}{2} \color{#3D99F6}{\int_0^\infty \frac{\sin x}{x} \, dx} \quad \quad \small \color{#3D99F6}{\text{Dirichlet integral}} \\ & = \frac{1}{2} \cdot{} \color{#3D99F6}{\frac{\pi}{2}} = \frac{\pi}{4} \end{aligned}

m A n = π 4 3 m π 8 n = π 4 m n = 2 3 m + n = 5 \begin{aligned} \frac{mA}{n} & = \frac{\pi}{4} \\ \implies \frac{3m\pi}{8n} & = \frac{\pi}{4} \\ \implies \frac{m}{n} & = \frac{2}{3} \\ \implies m + n & = \boxed{5} \end{aligned}

This should be tidied up a little, since the individual integrals such as 0 sin x x 3 d x \int_0^\infty \frac{\sin x}{x^3}\,dx do not exist, and cannot be evaluated separately. What makes this problem work is the fact that the differences between various pairs of integrals do behave, so that, for example 3 sin x sin 3 x = O ( x 3 ) x 0 , 3\sin x - \sin3x \; = \; O(x^3) \qquad \qquad x \to 0 \;, which means that what you have written as a separate pair of terms 3 8 [ sin x x 2 ] 0 + 1 8 [ sin 3 x x 2 ] 0 -\tfrac38\Big[\frac{\sin x}{x^2}\Big]_0^\infty + \tfrac18\Big[\frac{\sin 3x}{x^2}\Big]_0^\infty (neither of which exist) cancel out when considered as a single expression [ 1 8 sin 3 x 3 sin x x 2 ] 0 \Big[\tfrac18\frac{\sin 3x - 3\sin x}{x^2}\Big]_0^\infty

If you wrote everything out as an integral from a a to X X , then let a 0 a \to 0 and X X \to \infty , then you would be OK. Otherwise you need to integrate (for example) 3 sin x sin 3 x x 3 \frac{3\sin x - \sin3x}{x^3} by parts as a single integral, in which case all is well.

Mark Hennings - 5 years, 1 month ago

Log in to reply

does the limit x 0 x \to 0 exist for cos x x \frac{\cos x}{x}

Tanishq Varshney - 5 years, 1 month ago

Log in to reply

No. It behaves like 1 / x 1/x near 0 0 . The limit of ( 1 cos x ) / x (1-\cos x)/x exists and equals 0 0 , though.

Mark Hennings - 5 years, 1 month ago

I was taking:

[ sin x x 2 ] 0 = lim x sin x x 2 lim x 0 sin x x 2 By l’H o ˆ pital’s rule = 0 + 0 \begin{aligned} \left[ \dfrac{\sin x}{x^2} \right]_0^\infty & = \lim_{x \to \infty} \dfrac{\sin x}{x^2} -\color{#3D99F6}{ \lim_{x \to 0} \dfrac{\sin x}{x^2}} \quad \quad \small \color{#3D99F6}{\text{By l'Hôpital's rule}} \\ & = 0 + \color{#3D99F6}{0} \end{aligned}

Chew-Seong Cheong - 5 years, 1 month ago

Log in to reply

The limit of sin x / x 2 \sin x/x^2 does not exist as x x tends to 0 0 . It behaves like 1 / x 1/x near 0 0 .

Mark Hennings - 5 years, 1 month ago

Log in to reply

@Mark Hennings Thanks, I got it. lim x 0 sin x x x = 1 x \lim_{x \to 0} \dfrac{\color{#3D99F6}{\sin x}}{\color{#3D99F6}{x}\cdot{}x} = \dfrac {\color{#3D99F6}{1}}{x} .

Chew-Seong Cheong - 5 years, 1 month ago

Log in to reply

@Chew-Seong Cheong Almost. The limit is not 1 / x 1/x ; the function behaves like 1 / x 1/x (think what dividing the Maclaurin series for sin x \sin x by x 2 x^2 will look like), so there is no limit.

Mark Hennings - 5 years, 1 month ago

In the 11th step where did the the cosx/x go. Its evaluates to be infinity at x= 0

parv mor - 5 years, 1 month ago

The first integral is now fine. You need to do the same sort of thing with the second one as well, integrating x sin x x 3 \tfrac{x - \sin x}{x^3} by parts...

Mark Hennings - 5 years, 1 month ago

Log in to reply

Thanks again.

Chew-Seong Cheong - 5 years, 1 month ago

First, let's consider

sin x = 3 sin x 3 4 sin x 3 3 \displaystyle \sin { x } =3\sin { \frac { x }{ 3 } } -4{ \sin { \frac { x }{ 3 } } }^{ 3 }

Let u = x / 3 \displaystyle u=x/3 hence,

0 x sin x x 3 d x = 0 3 u 3 sin u + 4 sin u 3 u 3 × 27 × 3 d u \displaystyle \int _{ 0 }^{ \infty }{ \frac { x-\sin { x } }{ { x }^{ 3 } } dx } =\int _{ 0 }^{ \infty }{ \frac { 3u-3\sin { u } +4{ \sin { u } }^{ 3 } }{ { u }^{ 3 }\times 27 } \times } 3du

0 3 u 3 sin u + 4 sin u 3 u 3 × 27 × 3 d u = 0 u sin u 3 u 3 d u + 4 9 0 sin u 3 u 3 d u \displaystyle \int _{ 0 }^{ \infty }{ \frac { 3u-3\sin { u } +4{ \sin { u } }^{ 3 } }{ { u }^{ 3 }\times 27 } \times } 3du=\int _{ 0 }^{ \infty }{ \frac { u-\sin { u } }{ 3{ u }^{ 3 } } } du+\frac { 4 }{ 9 }\int _{ 0 }^{ \infty }{ \frac { { \sin { u } }^{ 3 } }{ { u }^{ 3 } } du }

0 x sin x x 3 d x = I = I 3 + 4 9 A \displaystyle \int _{ 0 }^{ \infty }{ \frac { x-\sin { x } }{ { x }^{ 3 } } dx } =I=\frac { I }{ 3 } +\frac { 4 }{ 9 } A

2 I 3 = 4 9 A \displaystyle \frac { 2I }{ 3 } =\frac { 4 }{ 9 } A

I = 2 3 A = m n A \displaystyle I=\frac { 2 }{ 3 } A=\frac { m }{ n } A

m + n = 5 \displaystyle m+n=\boxed{5}

Parv Mor
Apr 25, 2016

Can anyone tell whats wrong in this.

Well, you don't know whether s i n ( x ) x 3 \int \frac{sin(x)}{x^{3}} exist or not and in fact it doesn't so you cannot equate this one to the other one

คลุง แจ็ค - 5 years, 1 month ago

You can separate integrals only if both are defined

roja rani - 3 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...