I Was Very Amazed At The Solution 8

Calculus Level 5

Evaluate the expression:

81 n = 1 ( n 1 ) ! i = 1 n ( 9 + i ) \large 81 \sum_{n = 1}^{\infty} \frac{(n-1)!}{\prod_{i = 1}^{n} ( 9 + i )}

For more problems like this, try this set and harder set .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

敬全 钟
Jul 20, 2017

This solution requires nothing but a subtle observation. We let S = n = 1 ( n 1 ) ! i = 1 n ( 9 + i ) = n = 1 ( n 1 ) ! × 9 ! ( n + 9 ) ! = 1 10 n = 1 ( n 1 ) ! × 9 ! × 10 ( n + 9 ) ! = 1 10 n = 1 ( n 1 ) ! × 9 ! × ( n + 9 ( n 1 ) ) ( n + 9 ) ! = 1 10 n = 1 ( ( n 1 ) ! × 9 ! × ( n + 9 ) ( n + 9 ) ! ( n 1 ) ! × ( n 1 ) × 9 ! ( n + 9 ) ! ) = 1 10 n = 1 ( ( n 1 ) ! × 9 ! ( n + 8 ) ! n ! × 9 ! ( n + 9 ) ! + ( n 1 ) ! × 9 ! ( n + 9 ) ! ) = 1 10 n = 1 ( ( n 1 ) ! × 9 ! ( n + 8 ) ! n ! × 9 ! ( n + 9 ) ! ) + 1 10 n = 1 ( n 1 ) ! × 9 ! ( n + 9 ) ! \begin{aligned} S&=&\sum^{\infty}_{n=1}\frac{(n-1)!}{\prod^n_{i=1}(9+i)}\\ &=&{\color{#3D99F6}\sum^{\infty}_{n=1}\frac{(n-1)!\times9!}{(n+9)!}}\\ &=&\frac{1}{10}\sum^{\infty}_{n=1}\frac{(n-1)!\times9!\times10}{(n+9)!}\\ &=&\frac{1}{10}\sum^{\infty}_{n=1}\frac{(n-1)!\times9!\times(n+9-(n-1))}{(n+9)!}\\ &=&\frac{1}{10}\sum^{\infty}_{n=1}\left(\frac{(n-1)!\times9!\times(n+9)}{(n+9)!}-\frac{(n-1)!\times(n-1)\times9!}{(n+9)!}\right)\\ &=&\frac{1}{10}\sum^{\infty}_{n=1}\left(\frac{(n-1)!\times9!}{(n+8)!}-\frac{n!\times9!}{(n+9)!}+\frac{(n-1)!\times9!}{(n+9)!}\right)\\ &=&\frac{1}{10}\sum^{\infty}_{n=1}\left({\color{magenta}\frac{(n-1)!\times9!}{(n+8)!}-\frac{n!\times9!}{(n+9)!}}\right)+{\color{#3D99F6}\frac{1}{10}\sum^{\infty}_{n=1}\frac{(n-1)!\times9!}{(n+9)!}} \end{aligned} Observe that at the last step, we used the equality ( n 1 ) × ( n 1 ) ! = n ! ( n 1 ) ! (n-1)\times(n-1)!=n!-(n-1)! . Also, notice that the terms highlighted in blue are multiples of each other, and the terms highlighted in magenta is telescoping. With that, we obtain 9 S = 1 , 9S=1, which gives 81 S = 9 . 81S=\boxed{9}.

In the fifth line on the array of equations of S, I think, the denominator of the 2nd fraction should also be (n + 9)! right? :D

Christian Daang - 3 years, 5 months ago

Log in to reply

Yeah, you are right, my bad. I have edited it, thanks.

敬全 钟 - 3 years, 5 months ago
Guilherme Niedu
Jul 19, 2017

There is a simpler answer with no need of beta function:

S = 81 n = 1 ( n 1 ) ! i = 1 n ( 9 + i ) \large \displaystyle S = 81 \sum_{n=1}^{\infty} \frac{(n-1)!}{\prod_{i=1}^n (9+i)}

S = 81 9 ! n = 1 ( n 1 ) ! 9 ! i = 1 n ( 9 + i ) \large \displaystyle S = 81 \cdot \color{#3D99F6} 9! \color{#333333} \sum_{n=1}^{\infty} \frac{(n-1)!}{\color{#3D99F6} 9! \color{#333333}\prod_{i=1}^n (9+i)}

S = 81 9 ! n = 1 ( n 1 ) ! ( n + 9 ) ! \large \displaystyle S = 81 \cdot 9! \sum_{n=1}^{\infty} \frac{(n-1)!}{(n+9)!}

S = 81 9 ! n = 1 1 ( n + 9 ) ( n + 8 ) ( n + 7 ) ( n + 6 ) ( n + 5 ) ( n + 4 ) ( n + 3 ) ( n + 2 ) ( n + 1 ) n \large \displaystyle S = 81 \cdot 9! \sum_{n=1}^{\infty} \frac{1}{(n+9)(n+8)(n+7)(n+6)(n+5)(n+4)(n+3)(n+2)(n+1)n}

S = 81 9 ! n = 1 1 ( n + 9 ) ( n + 8 ) ( n + 7 ) ( n + 6 ) ( n + 5 ) ( n + 4 ) ( n + 3 ) ( n + 2 ) ( n + 1 ) n ( n + 9 ) n 9 \large \displaystyle S = 81 \cdot 9! \sum_{n=1}^{\infty} \frac{1}{(n+9)(n+8)(n+7)(n+6)(n+5)(n+4)(n+3)(n+2)(n+1)n} \color{#3D99F6} \cdot \frac{(n+9) - n}{9}

S = 9 9 ! n = 1 1 ( n + 8 ) ( n + 7 ) ( n + 6 ) ( n + 5 ) ( n + 4 ) ( n + 3 ) ( n + 2 ) ( n + 1 ) n 1 ( n + 9 ) ( n + 8 ) ( n + 7 ) ( n + 6 ) ( n + 5 ) ( n + 4 ) ( n + 3 ) ( n + 2 ) ( n + 1 ) \large \displaystyle S = 9\cdot 9! \sum_{n=1}^{\infty} \frac{1}{(n+8)(n+7)(n+6)(n+5)(n+4)(n+3)(n+2)(n+1)n} - \frac{1}{(n+9)(n+8)(n+7)(n+6)(n+5)(n+4)(n+3)(n+2)(n+1)}

This will telescope, and only the first term will remain:

S = 9 9 ! [ 1 ( n + 8 ) ( n + 7 ) ( n + 6 ) ( n + 5 ) ( n + 4 ) ( n + 3 ) ( n + 2 ) ( n + 1 ) n ] n = 1 \large \displaystyle S = 9\cdot 9! \left [ \frac{1}{(n+8)(n+7)(n+6)(n+5)(n+4)(n+3)(n+2)(n+1)n} \right]_{n=1}

S = 9 9 ! 1 9 ! \large \displaystyle S = 9\cdot 9! \cdot \frac{1}{9!}

S = 9 \color{#3D99F6} \boxed{\large \displaystyle S = 9}

Mark Hennings
Jul 19, 2017

We have 0 1 x a 1 ( 1 x ) b 1 d x = B ( a , b ) = Γ ( a ) Γ ( b ) Γ ( a + b ) = ( a 1 ) ! ( b 1 ) ! ( a + b 1 ) ! \int_0^1 x^{a-1}(1-x)^{b-1}\,dx \; = \; B(a,b) \; = \; \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} \; = \; \frac{(a-1)! (b-1)!}{(a+b-1)!} for integers a , b 1 a,b \ge 1 . We need to evaluate 81 n = 1 ( n 1 ) ! 9 ! ( n + 9 ) ! = 81 n = 1 B ( n , 10 ) = 81 n = 1 0 1 x n 1 ( 1 x ) 9 d x = 81 0 1 1 1 x ( 1 x ) 9 d x = 81 0 1 ( 1 x ) 8 d x = 81 × 1 9 = 9 \begin{aligned} 81\sum_{n=1}^\infty \frac{(n-1)! 9!}{(n+9)!} & = \; 81\sum_{n=1}^\infty B(n,10) \; = \; 81\sum_{n=1}^\infty \int_0^1 x^{n-1}(1-x)^9\,dx \\ & = \; 81 \int_0^1 \frac{1}{1-x} (1-x)^9\,dx \; = \; 81\int_0^1 (1-x)^8\,dx \; = \; 81 \times \tfrac19 \; = \; \boxed{9} \end{aligned}

So, this can prove my theory sir then? Right Sir? :D

Amazing solution sir, BTW. ^^

I was trying to prove my theorem using induction but it's not possible. HAHA.

Christian Daang - 3 years, 10 months ago

Log in to reply

Yes, because you are evaluating n = 1 ( n 1 ) ! a ! ( n + a ) ! = n = 1 B ( n , a + 1 ) = n = 1 0 1 x n 1 ( 1 x ) a d x = 0 1 ( 1 x ) a 1 d x = a 1 \begin{aligned} \sum_{n=1}^\infty \frac{(n-1)! a!}{(n+a)!} & = \; \sum_{n=1}^\infty B(n,a+1) \; = \; \sum_{n=1}^\infty \int_0^1 x^{n-1}(1-x)^a\,dx \\ & = \; \int_0^1 (1-x)^{a-1}\,dx \; = \; a^{-1} \end{aligned}

Mark Hennings - 3 years, 10 months ago

Log in to reply

Calculus is really amazing. HAHA.

As easy as 1, 2, 3 for Calculus, as hard as finding the exact value of ζ ( 3 ) \zeta (3) for algebra. HAHA.

Is it possible for proving my theory without the aid of calculus? ( Just asking sir. :D )

Christian Daang - 3 years, 10 months ago

Log in to reply

@Christian Daang Probably, but it is fiddly. You need to prove the partial fractions expansion of a ! ( n + 1 ) ( n + 2 ) ( n + a + 1 ) \frac{a!}{(n+1)(n+2)\cdots(n+a+1)} in terms of the Binomial coefficients (use standard partial fractions techniques, treating n n as the variable), and then you need to perform the sum to infinity over n n , using a Method of Differences type of approach. You will then be left with a finite sum to evaluate (the finite number of terms not cancelled out by the MoD).

Mark Hennings - 3 years, 10 months ago
Christian Daang
Jul 19, 2017

I try it for certain values of α \alpha i.e. 1, 2, 5, 9 and my theorem somewhat works.

n = 1 ( n 1 ) ! i = 1 n ( α + i ) = 1 α \sum_{n = 1}^{\infty} \dfrac{(n-1)!}{\displaystyle \prod_{i = 1}^{n} ( \alpha + i )} = \dfrac{1}{\alpha}

and hence,

81 n = 1 ( n 1 ) ! i = 1 n ( 9 + i ) = 81 1 9 = 9 \displaystyle 81\sum_{n = 1}^{\infty} \dfrac{(n-1)!}{\displaystyle \prod_{i = 1}^{n} ( 9 + i )} = 81\cdot\dfrac{1}{9} = \boxed{9}


For α = 1 \alpha = 1

n = 1 ( n 1 ) ! i = 1 n ( 1 + i ) = 1 ! n = 0 n ! ( n + 2 ) ! = n = 0 1 ! ( n + 2 ) ( n + 1 ) = n = 0 ( 1 n + 1 1 ( n + 2 ) ) = 1 1 \begin{aligned} \displaystyle \sum_{n = 1}^{\infty} \dfrac{(n-1)!}{\displaystyle \prod_{i = 1}^{n} ( 1 + i )} &= 1!\sum_{n=0}^{\infty} \dfrac{n!}{(n+2)!} \\ &= \sum_{n=0}^{\infty} \dfrac{1!}{(n+2)(n+1)} \\ &= \sum_{n=0}^{\infty} \left( \dfrac{\color{#D61F06}{1}}{n+1} - \dfrac{\color{#D61F06}{1}}{(n+2)} \right) \\ &= \dfrac{1}{1} \end{aligned}


For α = 2 \alpha = 2

n = 1 ( n 1 ) ! i = 1 n ( 2 + i ) = 2 ! n = 0 n ! ( n + 3 ) ! = n = 0 2 ! ( n + 3 ) ( n + 2 ) ( n + 1 ) = n = 0 ( 1 n + 1 2 ( n + 2 ) + 1 ( n + 3 ) ) = 1 2 \begin{aligned} \displaystyle \sum_{n = 1}^{\infty} \dfrac{(n-1)!}{\displaystyle \prod_{i = 1}^{n} ( 2 + i )} &= 2!\sum_{n=0}^{\infty} \dfrac{n!}{(n+3)!} \\ &= \sum_{n=0}^{\infty} \dfrac{2!}{(n+3)(n+2)(n+1)} \\ &= \sum_{n=0}^{\infty} \left( \dfrac{\color{#D61F06}{1}}{n+1} - \dfrac{\color{#D61F06}{2}}{(n+2)} + \dfrac{\color{#D61F06}{1}}{(n+3)}\right) \\ &= \dfrac{1}{2} \end{aligned}


For α = 5 \alpha = 5

n = 1 ( n 1 ) ! i = 1 n ( 5 + i ) = 5 ! n = 0 n ! ( n + 6 ) ! = n = 0 5 ! ( n + 6 ) ( n + 5 ) ( n + 4 ) ( n + 3 ) ( n + 2 ) ( n + 1 ) = n = 0 ( 1 n + 1 5 ( n + 2 ) + 10 ( n + 3 ) 10 n + 4 5 ( n + 5 ) + 10 ( n + 6 ) ) = 1 5 \begin{aligned} \displaystyle \sum_{n = 1}^{\infty} \dfrac{(n-1)!}{\displaystyle \prod_{i = 1}^{n} ( 5 + i )} &= 5!\sum_{n=0}^{\infty} \dfrac{n!}{(n+6)!} \\ &= \sum_{n=0}^{\infty} \dfrac{5!}{(n+6)(n+5)(n+4)(n+3)(n+2)(n+1)} \\ &= \sum_{n=0}^{\infty} \left( \dfrac{\color{#D61F06}{1}}{n+1} - \dfrac{\color{#D61F06}{5}}{(n+2)} + \dfrac{\color{#D61F06}{10}}{(n+3)} - \dfrac{\color{#D61F06}{10}}{n+4} - \dfrac{\color{#D61F06}{5}}{(n+5)} + \dfrac{\color{#D61F06}{10}}{(n+6)}\right) \\ &= \dfrac{1}{5} \end{aligned}

and so on...

Notice that the red colored numbers are the numbers in the ( α + 1 ) t h (\alpha + 1)th row of the Pascal's Triangle.


Update: Formal Proof of my Theorem

n = 1 ( n 1 ) ! i = 1 n ( α + i ) = n = 1 ( n 1 ) ! α α ( α + 1 ) ( α + 2 ) ( α + n ) = n = 1 ( n 1 ) ! ( α + n n ) α ( α + 1 ) ( α + 2 ) ( α + n ) = n = 1 ( ( n 1 ) ! ( α + n ) ) ( n ! ) α ( α + 1 ) ( α + 2 ) ( α + n 1 ) ( α + n ) = n = 1 ( ( n 1 ) ! α ( α + 1 ) ( α + 2 ) ( α + n 1 ) ( n ) ! α ( α + 1 ) ( α + 2 ) ( α + n ) ) \begin{aligned} \sum_{n = 1}^{\infty} \dfrac{(n-1)!}{\displaystyle \prod_{i = 1}^{n} ( \alpha + i )} \\ &= \sum_{n = 1}^{\infty} \dfrac{(n-1)! \cdot \alpha}{\displaystyle \alpha (\alpha + 1) (\alpha + 2) \cdots (\alpha + n)} \\ &= \sum_{n = 1}^{\infty} \dfrac{(n-1)! \cdot (\alpha + n - n)}{\displaystyle \alpha (\alpha + 1) (\alpha + 2) \cdots (\alpha + n)} \\ &= \sum_{n = 1}^{\infty} \dfrac{\big((n-1)! \ (\alpha + n)\big) - (n!)}{\displaystyle \alpha (\alpha + 1) (\alpha + 2) \cdots (\alpha + n - 1) (\alpha + n)} \\ &= \sum_{n = 1}^{\infty} \left( \dfrac{(n-1)!}{\displaystyle \alpha (\alpha + 1) (\alpha + 2) \cdots (\alpha + n-1)} - \dfrac{(n)!}{\displaystyle \alpha (\alpha + 1) (\alpha + 2) \cdots (\alpha + n)} \right) \cdot \end{aligned}

Let f ( n ) = ( n 1 ) ! α ( α + 1 ) ( α + 2 ) ( α + n 1 ) f ( n + 1 ) = ( n ) ! α ( α + 1 ) ( α + 2 ) ( α + n ) \displaystyle f(n) = \dfrac{(n-1)!}{\displaystyle \alpha (\alpha + 1) (\alpha + 2) \cdots (\alpha + n-1)} \implies f(n+1) = \dfrac{(n)!}{\displaystyle \alpha (\alpha + 1) (\alpha + 2) \cdots (\alpha + n)} \cdot

n = 1 ( n 1 ) ! i = 1 n ( α + i ) = n = 1 ( f ( n ) f ( n + 1 ) ) = ( f ( 1 ) f ( 2 ) ) + ( f ( 2 ) f ( 3 ) ) + ( f ( 3 ) f ( 4 ) ) + \begin{aligned}\implies \sum_{n = 1}^{\infty} \dfrac{(n-1)!}{\displaystyle \prod_{i = 1}^{n} ( \alpha + i )} \\ &= \sum_{n = 1}^{\infty} (f(n) - f(n+1)) \\ &= \big(f(1) - f(2)\big) + \big(f(2) - f(3)\big) + \big(f(3) - f(4)\big) + \cdots \end{aligned}

which will telescopes to f ( 1 ) f(1) \cdot

n = 1 ( n 1 ) ! i = 1 n ( α + i ) = f ( 1 ) = ( 1 1 ) ! α = 1 α \implies \sum_{n = 1}^{\infty} \dfrac{(n-1)!}{\displaystyle \prod_{i = 1}^{n} ( \alpha + i )} = f(1) = \dfrac{(1 - 1)!}{\alpha} = \dfrac{1}{\alpha} \cdot

Credits to the Owner of this Solution. ^^

You have shown that n = 1 ( n 1 ) ! i = 1 n ( α + i ) = 1 α \displaystyle \sum_{n = 1}^{\infty} \dfrac{(n-1)!}{\displaystyle \prod_{i = 1}^{n} ( \alpha + i )} = \dfrac{1}{\alpha} is true for α = 1 \alpha = 1 and α = 2 \alpha =2 , but how do you know that it's true for α = 9 \alpha = 9 too?

Hint: Partial fractions - Cver up rule .

Pi Han Goh - 3 years, 10 months ago

Log in to reply

I used algebra sir. XD Like, I do it manually. XD Seeing some terms to be cancelled out and the remaining term is 1 9 \dfrac{1}{9} . :)

Christian Daang - 3 years, 10 months ago

That's what I also did sir. XD The Cover Up Rule. :D

Christian Daang - 3 years, 10 months ago

Log in to reply

Nice! The cover up rule shows that the coefficients would be of the form ( 1 ) i ( α i ) (-1)^i { \alpha \choose i } :)

Calvin Lin Staff - 3 years, 10 months ago

Sir, Done doing the proof. :D

Christian Daang - 3 years, 10 months ago

Actually, the identity can be proven using telescoping sum, as presented in my solution.

敬全 钟 - 3 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...