Not a Coincidence

0. 0041 0043 0047 0053 0061 0071 0083 0097 0113 0131 0151 0. \, 0041 \, 0043 \, 0047 \, 0053 \, 0061 \, 0071 \, 0083 \, 0097 \, 0113 \, 0131 \, 0151\dots

Above are the first few digits decimal expansion of 4099200041 999700029999 \frac{4099200041}{999700029999} , written in groups of 4.

You may think that all of these numbers are prime. Unfortunately, this pattern of primes does end eventually. After how many prime numbers does this pattern cease?

Inspired by this and this .


The answer is 40.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sualeh Asif
Jul 7, 2015

@Akhmad Syaikhu Firizal posted a great solution using Arithmetic-Geometric Progression , I'll use the famous Euler's Prime Generating Polynomial

Euler showed that the polynomial n 2 n + 41 n^2 -n +41 gives prime numbers for integers 40 n 40 -40\leq n\leq 40 .

Now realize that the fraction is just n = 1 n 2 n + 41 1 0 4 n = 4099200041 999700029999 \large{\sum_{n=1}^{\infty} \dfrac{n^2 -n +41}{10^{4n}}=\dfrac{4099200041}{999700029999}}

Since the polynomial will produce prime numbers till n = 40 n=40 only. The first number not prime is n = 41 \boxed{n=41}

We may as well want to check that the n 2 n + 41 n^2 -n +41 produces a prime of 4 digits only since a larger digited prime may result in the carry. But, ( 40 ) 2 40 + 41 = 1523 (40)^2 - 40+41 = 1523 which is 4-digit prime.

0.0041004300470053.... = 0.004100410041.... + 2 ( 0.0000000100020003.... + 0.00000000000100020003.... + . . . . . ) 0.0041004300470053....=0.004100410041....+2(0.0000000100020003....+0.00000000000100020003....+.....) where, 0.004100410041... = 41 1 0 4 1 0.004100410041...= \frac{41}{10^4-1} then, 0.000100020003.... = 1 1 0 4 + 2 1 0 8 + 3 1 0 1 2 + . . . . = 1 0 4 ( 1 0 4 1 ) 2 0.000100020003....= \frac{1}{10^4} + \frac{2}{10^8} + \frac{3}{10^12} +.... = \frac{10^4}{(10^4-1)^2} so, 0.0041004300470053.... = 0.004100410041.... + 2 ( 0.0000000100020003.... + 0.00000000000100020003.... + . . . . . ) 0.0041004300470053....= 0.004100410041.... + 2(0.0000000100020003.... + 0.00000000000100020003.... + .....) = 41 1 0 4 1 + 2 ( 1 0 4 ( 1 0 4 ) ( 1 0 4 1 ) 2 + 1 0 4 ( 1 0 8 ) ( 1 0 4 1 ) 2 + 1 0 4 ( 1 0 1 2 ) ( 1 0 4 1 ) 2 + . . . ) = \frac{41}{10^4-1} + 2( \frac{10^4}{(10^4)(10^4-1)^2} + \frac{10^4}{(10^8)(10^4-1)^2} + \frac{10^4}{(10^12)(10^4-1)^2} + ...) = 41 1 0 4 1 + 2 ( 1 0 4 ( 1 0 4 1 ) 3 ) = 41 ( 1 0 4 1 ) 2 + 2 ( 1 0 4 ) ( 1 0 4 1 ) 3 = 4099200041 999700029999 = \frac{41}{10^4-1} +2(\frac{10^4}{(10^4-1)^3}) = \frac{41(10^4-1)^2+2(10^4)}{(10^4-1)^3} = \frac{4099200041}{999700029999} so it is clear that this is not a coincidence, and if we eliminate zeros , we will get a sequence of numbers that is 41 , 43 , 47 , 53 , . . . . 41,43,47,53,.... where, 43 = 41 + 2 43= 41+2 47 = 41 + 2 + 4 47=41+2+4 53 = 41 + 2 + 4 + 6 53=41+2+4+6 and so forth. a n = 41 + 2 + 4 + 6 + . . . . + 2 ( n 1 ) = 41 + 2 ( 1 + 2 + 3 + . . . . + ( n 1 ) ) = 41 + 2 ( n 1 ) ( n ) 2 = 41 + ( n 1 ) ( n ) a_{n} = 41+2+4+6+....+2(n-1) = 41+2(1+2+3+....+(n-1)) = 41+2\frac{(n-1)(n)}{2} = 41+(n-1)(n) the function of pattern is n ( n 1 ) + 41 n(n-1)+41 so, this function will not generate a prime number , if n ( n - 1 ) can be divided by 41 , so n that meet is 41 and 42.the least n is 41. then, this pattern will cease after 40 prime number. so the answer is 40

Do you know how to explain why that's the pattern?

Calvin Lin Staff - 5 years, 11 months ago

Log in to reply

43 = 41 + 2 43= 41+2 47 = 41 + 2 + 4 47=41+2+4 53 = 41 + 2 + 4 + 6 53=41+2+4+6 and so forth. a n = 41 + 2 + 4 + 6 + . . . . + 2 ( n 1 ) = 41 + 2 ( 1 + 2 + 3 + . . . . + ( n 1 ) ) = 41 + 2 n ( n 1 ) 2 = 41 + n ( n 1 ) a_{n} = 41+2+4+6+....+2(n-1) = 41+2(1+2+3+....+(n-1)) = 41+2\frac{n(n-1)}{2} = 41+n(n-1)

Akhmad Syaikhu Firizal - 5 years, 11 months ago

Log in to reply

I am not asking how you spotted the pattern.

What I meant is, how did Garrett come up with the fraction in the first place? Was it just a coincidence?

Calvin Lin Staff - 5 years, 11 months ago

Log in to reply

@Calvin Lin it's I don't know

Akhmad Syaikhu Firizal - 5 years, 11 months ago

Log in to reply

@Akhmad Syaikhu Firizal Hint: Arithmetic-Geometric Progression

We know how to find 1 1 0 4 n \sum \frac{1}{ 10^{4n} } . Can you find n 1 0 4 n \sum \frac{n}{ 10^{4n} } ?


There are, of course, other alternative approaches.

Calvin Lin Staff - 5 years, 11 months ago

Log in to reply

@Calvin Lin I get, thank for your help 4099200041 99970002999 = 41 ( 1 0 4 1 ) + 2 ( 1 0 4 ) ( 1 0 4 1 ) 3 \frac{4099200041}{99970002999}=\frac{41(10^4-1)+2(10^4)}{(10^4-1)^3}

Akhmad Syaikhu Firizal - 5 years, 11 months ago

Log in to reply

@Akhmad Syaikhu Firizal Great! Could you update your solution with this insight? THanks!

Calvin Lin Staff - 5 years, 11 months ago

@Calvin Lin Yepp @Akhmad Syaikhu Firizal , that page just about sums up the solution, get to it!

Garrett Clarke - 5 years, 11 months ago

@Calvin Lin 1 0 4 ( 1 0 4 1 ) 2 ? \frac{10^4}{(10^4 - 1)^2 ?}

Akhmad Syaikhu Firizal - 5 years, 11 months ago

@Akhmad Syaikhu Firizal Better figure it out before a better solution is posted!

Garrett Clarke - 5 years, 11 months ago

Good solution!

Alex Li - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...