Not ordinary sum-1

Calculus Level 5

n = 1 n 3 3 n n ! = c e a π d 1 b \large \sum _{ n=1 }^{ \infty }{ \dfrac { { n }^{ 3} }{ { 3 }^{ n }\cdot n! } } =\dfrac { c~\sqrt [ a ]{ e } ~\pi^{d-1}}{ b }

If the equation above holds true for positive integers a a , b b , c c , and d d , while c c and b b are coprime, find a + b + c + d a+b+c+d .

Clarification : e 2.71828 e \approx 2.71828 denotes the Euler's number .


Inspiration .

Also try part-2 here .


The answer is 50.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Jul 6, 2016

Relevant wiki: Taylor Series - Problem Solving

Write the sum as:

n = 1 ( n ( n 1 ) ( n 2 ) ) + ( 3 n ( n 1 ) ) + n 3 n n ! \displaystyle\large \sum _{ n=1 }^{ \infty }{ \dfrac { (n(n-1)(n-2))+(3n(n-1))+n}{ { 3 }^{ n }\cdot n! } }

= n = 1 n ( n 1 ) ( n 2 ) 3 n n ! + 3 n = 1 n ( n 1 ) 3 n n ! + n = 1 n 3 n n ! =\displaystyle\sum _{ n=1 }^{ \infty }{ \dfrac { n(n-1)(n-2)}{ { 3 }^{ n }\cdot n! } }+3\displaystyle\sum _{ n=1 }^{ \infty }{ \dfrac { n(n-1)}{ { 3 }^{ n }\cdot n! } }+\displaystyle\sum _{ n=1 }^{ \infty }{ \dfrac { n}{ { 3 }^{ n }\cdot n! } }

= n = 3 1 3 n ( n 3 ) ! + 3 n = 1 1 3 n ( n 2 ) ! + n = 1 1 3 n ( n 1 ) ! =\displaystyle\sum _{ n=3 }^{ \infty }{ \dfrac { 1}{ { 3 }^{ n }\cdot ( n-3)! } }+3\displaystyle\sum _{ n=1 }^{ \infty }{ \dfrac { 1}{ { 3 }^{ n }\cdot (n-2)! } }+\displaystyle\sum _{ n=1 }^{ \infty }{ \dfrac { 1}{ { 3 }^{ n }\cdot (n-1)! } }

= 1 27 n = 2 ( 1 3 ) n 3 ( n 3 ) ! + 1 3 n = 2 ( 1 3 ) n 2 ( n 2 ) ! + 1 3 n = 1 ( 1 3 ) n 1 ( n 1 ) ! =\dfrac 1{27}\displaystyle\sum _{ n=2 }^{ \infty }{ \dfrac { \left(\frac 13\right)^{n-3}}{ ( n-3)! } }+\dfrac 1{3}\displaystyle\sum _{ n=2 }^{ \infty }{ \dfrac { \left(\frac 13\right)^{n-2}}{ ( n-2)! } }+\dfrac 13\displaystyle\sum _{ n=1 }^{ \infty }{ \dfrac { \left(\frac 13\right)^{n-1}}{ (n-1)! } }

= 1 27 e 1 / 3 + 1 3 e 1 / 3 + 1 3 e 1 / 3 ( e x = r = 0 x r r ! ) =\dfrac 1{27}e^{1/3}+\dfrac 13e^{1/3}+\dfrac 13e^{1/3}~~\left(\small{\because \color{#3D99F6}{e^x=\displaystyle\sum_{r=0}^{\infty}\dfrac{x^r}{r!}}}\right)

= 19 e 1 / 3 π 0 27 \large =\dfrac{19e^{1/3}\pi^0}{27}

3 + 27 + 19 + 1 = 50 \Large \therefore 3+27+19+1=\boxed{\color{#D61F06}{50}}

That pi made me to check my solution twice if i am not missing anything

Prakhar Bindal - 4 years, 11 months ago

Log in to reply

Lol.... That was the reason why pi was introduced... :-)

Rishabh Jain - 4 years, 11 months ago

Log in to reply

by the way if you dont mind can i ask which college are you joining and branch?

Prakhar Bindal - 4 years, 11 months ago

Log in to reply

@Prakhar Bindal Most probably BITS Pilani dual degree. ....Branch will be decided in 2nd year.

Rishabh Jain - 4 years, 11 months ago

Log in to reply

@Rishabh Jain Ohh brilliant . you must have scored nice in bits! . congrats

Prakhar Bindal - 4 years, 11 months ago

Log in to reply

@Prakhar Bindal Not at all.. I screwed it like jee... But just got moderate score there which was a sufficient reason for me not to take a drop. :(

Rishabh Jain - 4 years, 11 months ago

Log in to reply

@Rishabh Jain Rishabh, will you attempt jee once again when you are in your 1st year btech .

Syed Shahabudeen - 4 years, 11 months ago

Log in to reply

@Syed Shahabudeen No ... Not at all

Rishabh Jain - 4 years, 11 months ago

Proceeding differently, observe that the sum equals ( e ( e x ) / 3 ) (e^{(e^x)/3})''' at x = 0 x=0 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...