Not sure if it's original, but interesting to think!

Algebra Level 3

For a positive integer k k , the sum:

n = 1 1 n ( n + 1 ) ( n + 2 ) . . . ( n + k ) \large \sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)...(n+k)}

converges to...

1 ( k ! ) 2 \large \displaystyle \frac{1}{(k!)^2} 1 k 2 \large \displaystyle \frac{1}{k^2} 1 k k ! \large \displaystyle \frac{1}{k\cdot k!} 1 k ! \large \displaystyle \frac{1}{k!}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Guilherme Niedu
May 24, 2017

S = n = 1 1 n ( n + 1 ) ( n + 2 ) . . . ( n + k 1 ) ( n + k ) \large \displaystyle S = \sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)...(n+k-1)(n+k)}

S = n = 1 1 n ( n + 1 ) ( n + 2 ) . . . ( n + k 1 ) ( n + k ) ( n + k ) n k \large \displaystyle S = \sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)...(n+k-1)(n+k)} \color{#3D99F6} \cdot \frac{(n+k) - n}{k}

S = 1 k n = 1 1 n ( n + 1 ) . . . ( n + k 1 ) 1 ( n + 1 ) ( n + 2 ) . . . ( n + k ) \large \displaystyle S = \frac1k \sum_{n=1}^{\infty} \frac{1}{n(n+1)...(n+k-1)} - \frac{1}{(n+1)(n+2)...(n+k)}

This will telescope, and only the first term will remain:

S = 1 k [ 1 n ( n + 1 ) ( n + 2 ) . . . ( n + k 1 ) ] n = 1 \large \displaystyle S = \frac1k \left [ \frac{1}{n(n+1)(n+2)...(n+k-1)} \right]_{n=1}

S = 1 k k ! \color{#3D99F6} \boxed{ \large \displaystyle S = \frac{1}{k\cdot k!} }

It can be done also by Using Beta function

Kushal Bose - 4 years ago

Log in to reply

Can you write this solution, sir? I am happy to see!

Guilherme Niedu - 4 years ago

Log in to reply

Great solution, (+1)! Somehow I can't comment on your solution, but still, congratulations

Guilherme Niedu - 4 years ago

Log in to reply

@Guilherme Niedu Why u can not comment ?

Kushal Bose - 4 years ago

Log in to reply

@Kushal Bose Don't know. I am using the app and the option to reply does not appear. Maybe because I wrote the problem, don't know...

Guilherme Niedu - 4 years ago

Log in to reply

@Guilherme Niedu Okk BTW thanks

Kushal Bose - 4 years ago
Kushal Bose
May 25, 2017

t n = 1 n ( n + 1 ) ( n + 2 ) . . . . ( n + k ) = ( n 1 ) ! ( n + k ) ! = 1 k ! ( n 1 ) ! k ! ( n + k ) ! = Γ ( n ) Γ ( k + 1 ) Γ ( n + k + 1 ) = 1 k ! B ( n , k + 1 ) t_n=\dfrac{1}{n(n+1)(n+2)....(n+k)}=\dfrac{(n-1)!}{(n+k)!}=\dfrac{1}{k!} \dfrac{(n-1)! k!}{(n+k)!} \\ =\dfrac{\Gamma(n) \Gamma(k+1)}{\Gamma(n+k+1)} =\dfrac{1}{k!} B(n,k+1)

We need to evaluate

S = n = 1 1 k ! B ( n , k + 1 ) = n = 1 1 k ! 0 1 x n 1 ( 1 x ) k d x S=\displaystyle \sum_{n=1}^{\infty} \dfrac{1}{k!} B(n,k+1) \\ =\displaystyle \sum_{n=1}^{\infty} \dfrac{1}{k!} \int_{0}^{1} x^{n-1} (1-x)^k dx

= 1 k ! 0 1 ( 1 x ) k ( n = 1 x n 1 ) d x = 1 k ! 0 1 ( 1 x ) k ( 1 1 x ) d x =\dfrac{1}{k!} \displaystyle \int_{0}^{1} (1-x)^k (\displaystyle \sum_{n=1}^{\infty} x^{n-1}) dx \\ =\dfrac{1}{k!} \displaystyle \int_{0}^{1} (1-x)^k (\dfrac{1}{1-x}) dx .......................As x < 1 |x|<1

= 1 k ! 0 1 ( 1 x ) k 1 d x = 1 k . k ! =\dfrac{1}{k!} \displaystyle \int_{0}^{1} (1-x)^{k-1} dx \\ =\dfrac{1}{k.k!}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...