Number pattern

Algebra Level 3

1 2 2 2 + 3 2 4 2 + 5 2 201 0 2 + 201 1 2 = ? \large 1^2-2^2+3^2-4^2+5^2-\ldots-2010^2+2011^2=\ ?


The answer is 2023066.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Kenny Lau
Sep 23, 2014

1 2 2 2 + 3 2 4 2 + 5 2 201 0 2 + 201 1 2 = 1 + ( 3 2 2 2 ) + ( 5 2 4 2 ) + + ( 201 1 2 201 0 2 ) = 1 + ( 3 2 ) ( 3 + 2 ) + ( 5 4 ) ( 5 + 4 ) + + ( 2011 2010 ) ( 2011 + 2010 ) = 1 + 3 + 2 + 5 + 4 + + 2011 + 2010 = 1 + 2 + 3 + 4 + 5 + + 2010 + 2011 = 2011 × 2012 2 = 2023066 \begin{array}{cl} &1^2-2^2+3^2-4^2+5^2-\cdots-2010^2+2011^2\\ =&1+(3^2-2^2)+(5^2-4^2)+\cdots+(2011^2-2010^2)\\ =&1+(3-2)(3+2)+(5-4)(5+4)+\cdots+(2011-2010)(2011+2010)\\ =&1+3+2+5+4+\cdots+2011+2010\\ =&1+2+3+4+5+\cdots+2010+2011\\ =&\dfrac{2011\times2012}{2}\\ =&2023066 \end{array}

Nice approach !!!!

Abdur Rehman Zahid - 5 years, 6 months ago

Did same way upvoted

Ayush Sharma - 6 years, 1 month ago
L N
Jun 4, 2014

There are 1006 odd, and 1005 even terms. The formulas for generating odd and even squares are: n ( 2 n 1 ) ( 2 n + 1 ) 3 \frac{n(2n-1)(2n+1)}{3} and 2 n ( n + 1 ) ( 2 n + 1 ) 3 \frac{2n(n+1)(2n+1)}{3} respectively. Hence you can subtract the two from each other and then simplify to get: (1006)(2011)(3)/3 = (1006)(2011) = 2023066

( 1 2 ) ( 1 + 2 ) + ( 3 4 ) ( 3 + 4 ) + . . . + ( 2009 2010 ) ( 2009 + 2010 ) + 201 1 2 (1-2)(1+2)+(3-4)(3+4)+ ... +(2009-2010)(2009+2010)+2011^{2} = ( 1 + 2 + 3 + 4 + . . . + 2010 ) + 201 1 2 =-(1+2+3+4+ ... + 2010) +2011^{2} = 2011 ( 2011 1005 ) = 2023066 =2011(2011-1005)=2023066

Whoa !! Nice approach !!

Akshat Sharda - 5 years, 6 months ago
Kartik Sharma
May 29, 2014

The series can be written as

(1^2-2^2) + (3^2-4^2) + (5^2-6^2)......... +(2009^2-2010^2) +2011^2

Now use a^2-b^2 = (a-b)(a+b)

=(-1)(3) + (-1)(7) + (-1)(11).......+(-1)(4019) +2011^2

= -3 -7 - 11 -............-4019 +2011^2

= -(3+7+11.....4019) + 2011^2

Now, the series in the brackets is in AP, hence sum = n/2(a+l)

= - (1005/2(4022) +2011^2

= -(1005)(2011) + 2011(2011)

= 2011(2011-1005) = 2011 X 1066 = 2023066

Akshat Sharda
Nov 22, 2015

n = 0 1005 ( 2 n + 1 ) 2 n = 1 1005 ( 2 n ) 2 1 2 + n = 1 1005 ( 4 n 2 + 4 n + 1 ) n = 1 1005 ( 4 n 2 ) 1 + 4 n = 1 1005 n 2 + 4 n = 1 1005 n + n = 1 1005 1 4 n = 1 1005 n 2 1 + 4 1005 × 1006 2 + 1005 = 2023066 \displaystyle \sum^{1005}_{n=0}(2n+1)^2-\displaystyle \sum^{1005}_{n=1}(2n)^2 \\ 1^2+ \displaystyle \sum^{1005}_{n=1}(4n^2+4n+1)- \displaystyle \sum^{1005}_{n=1}(4n^2) \\ 1+\cancel{4 \displaystyle \sum^{1005}_{n=1}n^2}+4 \displaystyle \sum^{1005}_{n=1}n+ \displaystyle \sum^{1005}_{n=1}1-\cancel{4 \displaystyle \sum^{1005}_{n=1}n^2} \\ 1+4\cdot \frac{1005×1006}{2}+1005=\boxed{2023066}

Did same!!

Can you tell how to type sigma?

Dev Sharma - 5 years, 6 months ago

Log in to reply

\displaystyle \sum^{1005}_{n=1}n^2= n = 1 1005 n 2 \displaystyle \sum^{1005}_{n=1}n^2

You can refer to the formatting guide as well.

Akshat Sharda - 5 years, 6 months ago

Log in to reply

thanks... Let me try

n = 5 100 n 3 \displaystyle\sum^{100}_{n=5} n^3

Dev Sharma - 5 years, 6 months ago

Log in to reply

@Dev Sharma Congrats !!

Akshat Sharda - 5 years, 6 months ago

1 2 2 2 + 3 2 4 2 + . . . 201 0 2 + 201 1 2 = 1^2 - 2^2 + 3^2 - 4^2 + ... - 2010^2 +2011^2 = = 1 2 + 2 2 + 3 2 + . . . + 201 1 2 2 ( 2 2 + 4 2 + 6 2 + . . . + 201 1 2 ) = = 1^2 + 2^2 + 3^2 + ... + 2011^2 - 2(2^2 + 4^2 + 6^2 + ... + 2011^2) = = 1 2 + 2 2 + 3 2 + . . . + 201 1 2 8 ( 1 2 + 2 2 + 3 2 + . . . + 100 5 2 ) = = 1^2 + 2^2 + 3^2 + ... + 2011^2 - 8(1^2 + 2^2 + 3^2 + ... + 1005^2) = = 2011 2012 4023 6 8 ( 1005 1006 2011 6 ) = 2023066 = \frac {2011 \cdot 2012 \cdot 4023}{6} - 8(\frac {1005 \cdot 1006 \cdot 2011}{6}) = \boxed{2023066}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...