These Numbers Are Stupendous!

Algebra Level 2

( 666666 6 100 6’s ) 2 + ( 888888 8 100 8’s ) = ? \large \left(\underbrace{666666\ldots6}_{\text{100 6's}} \right)^2 + \left( \underbrace{888888\ldots8}_{\text{100 8's}}\right) = \, ?

222222 2 200 2’s \underbrace{222222\ldots2}_{\text{200 2's}} 444444 4 100 4’s \underbrace{444444\ldots4}_{\text{100 4's}} 444444 4 200 4’s \underbrace{444444\ldots4}_{\text{200 4's}} 999999 9 100 9’s \underbrace{999999\ldots9}_{\text{100 9's}}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Relevant wiki: Algebraic Manipulation Problem Solving - Basic

First we have d d d d d d d n d’s = d ( 1 0 n 1 ) 9 \overline{\underbrace{dddddd\ldots d}_\text{n d's}}=\dfrac{d(10^n-1)}{9} . Then, we want to calculate:

x = ( 6 ( 1 0 100 1 ) 9 ) 2 + 8 ( 1 0 100 1 ) 9 = 4 ( 1 0 100 1 ) 2 9 + 8 ( 1 0 100 1 ) 9 x=\left(\dfrac{6(10^{100}-1)}{9}\right)^2+\dfrac{8(10^{100}-1)}{9}=\dfrac{4(10^{100}-1)^2}{9}+\dfrac{8(10^{100}-1)}{9}

x = 1 0 100 1 9 ( 4 ( 1 0 100 1 ) + 8 ) = 1 0 100 1 9 ( 4 1 0 100 + 4 ) x=\dfrac{10^{100}-1}{9}\left(4(10^{100}-1)+8\right)=\dfrac{10^{100}-1}{9}(4\cdot 10^{100}+4)

x = 4 9 ( 1 0 100 1 ) ( 1 0 100 + 1 ) = 4 ( 1 0 200 1 ) 9 x=\dfrac{4}{9}(10^{100}-1)(10^{100}+1)=\dfrac{4(10^{200}-1)}{9}

x = 444444 4 200 4’s \boxed{x=\underbrace{444444\ldots 4}_\text{200 4's}}

Wow! Neat solution!

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

Thank you :D

Alan Enrique Ontiveros Salazar - 4 years, 11 months ago
Hung Woei Neoh
Jun 27, 2016

Notice that

6 2 = 36 6 6 2 = 4356 66 6 2 = 443556 666 6 2 = 44435556 6666 6 2 = 4444355556 \begin{aligned}6^2 &= 36\\ 66^2&=4356\\ 666^2&=443556\\ 6666^2&=44435556\\ 66666^2&=4444355556\end{aligned}

Therefore, we can generalize the pattern (a more rigorous proof available below):

( 666 6 n 6’s ) 2 = 444 4 ( n 1 ) 4’s 3 555 5 ( n 1 ) 5’s 6 \large\left(\underbrace{666\ldots6}_{n\text{ 6's}}\right)^2 = \underbrace{444\ldots4}_{(n-1)\text{ 4's}}3 \underbrace{555\ldots5}_{(n-1)\text{ 5's}} 6

Therefore,

( 666 6 100 6’s ) 2 + 888 8 100 8’s = 444 4 99 4’s 3 555 5 99 5’s 6 + 888 8 100 8’s = 444 4 99 4’s 000 0 101 0’s + 3 555 5 99 5’s 6 + 888 8 100 8’s = 444 4 99 4’s 000 0 101 0’s + 444 4 101 4’s = 444444 4 200 4’s \left(\underbrace{666\ldots6}_{100\text{ 6's}}\right)^2+\underbrace{888\ldots8}_{100\text{ 8's}}\\ =\underbrace{444\ldots4}_{99\text{ 4's}}3 \underbrace{555\ldots5}_{99\text{ 5's}} 6+\underbrace{888\ldots8}_{100\text{ 8's}}\\ =\underbrace{444\ldots4}_{99\text{ 4's}}\underbrace{000\ldots0}_{101\text{ 0's}} + 3 \underbrace{555\ldots5}_{99\text{ 5's}} 6+\underbrace{888\ldots8}_{100\text{ 8's}}\\ =\underbrace{444\ldots4}_{99\text{ 4's}}\underbrace{000\ldots0}_{101\text{ 0's}} +\underbrace{444\ldots4}_{101\text{ 4's}}\\ =\boxed{\underbrace {444444\ldots4}_{200\text{ 4's}}}


Proof of my claim above by induction (as requested by @Pi Han Goh )

Statement: Let P n P_n be the proposition that

( 666 6 n 6’s ) 2 = 444 4 ( n 1 ) 4’s 3 555 5 ( n 1 ) 5’s 6 \large\left(\underbrace{666\ldots6}_{n\text{ 6's}}\right)^2 = \underbrace{444\ldots4}_{(n-1)\text{ 4's}}3 \underbrace{555\ldots5}_{(n-1)\text{ 5's}} 6

for all positive integers n n

Base Case: When n = 1 n=1 ,

LHS = 6 2 = 36 =6^2 = 36 , RHS = 36 =36 , LHS = RHS

Induction Hypothesis: Assume P k P_k is true for some positive integer k k . Consider P k + 1 P_{k+1}

LHS P k + 1 P_{k+1}

= ( 666 6 ( k + 1 ) 6’s ) 2 = ( 6 000 0 k 0’s + 666 6 k 6’s ) 2 = 36 000 0 2 k 0’s + 2 ( 6 000 0 k 0’s ) ( 666 6 k 6’s ) + 444 4 ( k 1 ) 4’s 3 555 5 ( k 1 ) 5’s 6 = 36 000 0 2 k 0’s + 12 ( 666 6 k 6’s 000 0 k 0’s ) + 444 4 ( k 1 ) 4’s 3 555 5 ( k 1 ) 5’s 6 = 36 000 0 2 k 0’s + 666 6 k 6’s 000 0 ( k + 1 ) 0’s + 1 333 3 ( k 1 ) 3’s 2 000 0 k 0’s + 444 4 ( k 1 ) 4’s 3 555 5 ( k 1 ) 5’s 6 = 36 000 0 2 k 0’s + 666 6 k 6’s 000 0 ( k + 1 ) 0’s + 1 777 7 ( k 1 ) 7’s 555 5 k 5’s 6 = 36 000 0 2 k 0’s + 8 444 4 ( k 2 ) 4’s 3 555 5 k 5’s 6 = 444 4 k 4’s 3 555 5 k 5’s 6 =\left(\underbrace{666\ldots6}_{(k+1)\text{ 6's}}\right)^2\\ =\left(6\underbrace{000\ldots0}_{k \text{ 0's}}+ \underbrace{666\ldots6}_{k\text{ 6's}}\right)^2\\ =36\underbrace{000\ldots0}_{2k \text{ 0's}}+2\left(6\underbrace{000\ldots0}_{k \text{ 0's}}\right)\left( \underbrace{666\ldots6}_{k\text{ 6's}}\right) + \underbrace{444\ldots4}_{(k-1)\text{ 4's}}3 \underbrace{555\ldots5}_{(k-1)\text{ 5's}} 6\\ =36\underbrace{000\ldots0}_{2k \text{ 0's}}+12\left( \underbrace{666\ldots6}_{k\text{ 6's}}\underbrace{000\ldots0}_{k \text{ 0's}}\right) + \underbrace{444\ldots4}_{(k-1)\text{ 4's}}3 \underbrace{555\ldots5}_{(k-1)\text{ 5's}} 6\\ =36\underbrace{000\ldots0}_{2k \text{ 0's}}+ \underbrace{666\ldots6}_{k\text{ 6's}}\underbrace{000\ldots0}_{(k+1) \text{ 0's}}+ 1\underbrace{333\ldots3}_{(k-1)\text{ 3's}}2\underbrace{000\ldots0}_{k \text{ 0's}}+\underbrace{444\ldots4}_{(k-1)\text{ 4's}}3 \underbrace{555\ldots5}_{(k-1)\text{ 5's}} 6\\ =36\underbrace{000\ldots0}_{2k \text{ 0's}}+ \underbrace{666\ldots6}_{k\text{ 6's}}\underbrace{000\ldots0}_{(k+1) \text{ 0's}}+ 1\underbrace{777\ldots7}_{(k-1)\text{ 7's}} \underbrace{555\ldots5}_{k\text{ 5's}} 6\\ =36\underbrace{000\ldots0}_{2k \text{ 0's}}+ 8\underbrace{444\ldots4}_{(k-2)\text{ 4's}} 3\underbrace{555\ldots5}_{k\text{ 5's}} 6\\ =\underbrace{444\ldots4}_{k\text{ 4's}}3 \underbrace{555\ldots5}_{k\text{ 5's}} 6

= = RHS P k + 1 P_{k+1}

Conclusion: By Mathematical Induction, since P 1 P_1 is true and P k P_k is true implies P k + 1 P_{k+1} is true, thus P n P_n is true for all positive integers n n

Therefore, we can generalize the pattern:

( 666 6 n 6’s ) 2 = 444 4 ( n 1 ) 4’s 3 555 5 ( n 1 ) 5’s 6 \large\left(\underbrace{666\ldots6}_{n\text{ 6's}}\right)^2 = \underbrace{444\ldots4}_{(n-1)\text{ 4's}}3 \underbrace{555\ldots5}_{(n-1)\text{ 5's}} 6

You need to prove that this holds for all positive integer n n . Hint : Induction.

Pi Han Goh - 4 years, 11 months ago

Log in to reply

Request processed. Please verify

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

Woah!!! This is very well explained! You're really great!

Similarly, one can show that

( 333 3 n 3’s ) 2 = 111 1 ( n 1 ) 4’s 0 888 8 ( n 1 ) 8’s 9 \large\left(\underbrace{333\ldots3}_{n\text{ 3's}}\right)^2 = \underbrace{111\ldots1}_{(n-1)\text{ 4's}}0 \underbrace{888\ldots8}_{(n-1)\text{ 8's}} 9

And

( 999 9 n 9’s ) 2 = 999 9 ( n 1 ) 9’s 8 000 0 ( n 1 ) 8’s 1 \large\left(\underbrace{999\ldots9}_{n\text{ 9's}}\right)^2 = \underbrace{999\ldots9}_{(n-1)\text{ 9's}}8 \underbrace{000\ldots0}_{(n-1)\text{ 8's}} 1


Note that there is a (slightly) simpler approach: Start with ( 6666.....6 n times ) 2 = 4 9 ( 1 0 n 1 ) 2 \left(\underbrace{6666.....6}_{n \text{times}}\right)^2 = \dfrac49 (10^n - 1)^2 , use ( a b ) 2 = a 2 2 a b + b 2 (a-b)^2 = a^2 - 2ab + b^2 .

Pi Han Goh - 4 years, 11 months ago

Log in to reply

@Pi Han Goh Thanks, but I'm not really great. I just happen to have the patience to bash or use tedious solutions

For your alternate approach, wouldn't it be simpler if we just proved this:

a a a a n a’s = a 9 ( 1 0 n 1 ) \underbrace{aaa\ldots a}_{n \text{ a's}} = \dfrac{a}{9}(10^n - 1)

where a a is an integer in the range 1 a 9 1\leq a\leq 9 and n n is a positive integer

Once this is proved, we just calculate the required answer, as shown in Alan's solution

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

@Hung Woei Neoh The question is here is "how to prove that 66666....6 = that number I've written above", which you have written up quite nicely.

Of course, Alan's solution is the best for this problem, but yours offers some alternative insight as well, so you shouldn't sell yourself short.

Pi Han Goh - 4 years, 11 months ago
Sharky Kesa
Jun 30, 2016

The quick and dirty way:

Firstly, the sum has easily more than 100 digits. We now only have 2 choices remaining. Notice how both addends are divisible by 4. Since 22 is not divisible by 4 but 44 is, by the divisibility test for 4, the only possible choice which could satisfy is 444444 4 200 4’s \underbrace{444444\ldots 4}_\text{200 4's} .

I too did in the same way !!

Jus Jaisinghani - 4 years, 11 months ago

We can prove d d d d d d . . . . . . d = d ( 1 0 n 1 ) 9 dddddd......d = \frac{d(10^n-1)}{9} by following method:- d d d d . . . d = d ( 1111...1 ) = d ( 1 0 n + . . . + 1000 + 100 + 10 + 1 ) dddd...d = d(1111...1) = d(10^n+...+1000+100+10+1) Now we know that 1 0 n + . . . + 100 + 10 + 1 10^n+...+100+10+1 is a geometric series. So, d ( 1 0 n + . . . 100 + 10 + 1 ) = d ( 1 0 n 1 ) 10 1 = d ( 1 0 n 1 ) 9 d(10^n+...100+10+1) = \frac{d(10^n-1)}{10-1} = \frac{d(10^n-1)}{9}

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...