⎝ ⎛ 100 6’s 6 6 6 6 6 6 … 6 ⎠ ⎞ 2 + ⎝ ⎛ 100 8’s 8 8 8 8 8 8 … 8 ⎠ ⎞ = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Wow! Neat solution!
Notice that
6 2 6 6 2 6 6 6 2 6 6 6 6 2 6 6 6 6 6 2 = 3 6 = 4 3 5 6 = 4 4 3 5 5 6 = 4 4 4 3 5 5 5 6 = 4 4 4 4 3 5 5 5 5 6
Therefore, we can generalize the pattern (a more rigorous proof available below):
⎝ ⎛ n 6’s 6 6 6 … 6 ⎠ ⎞ 2 = ( n − 1 ) 4’s 4 4 4 … 4 3 ( n − 1 ) 5’s 5 5 5 … 5 6
Therefore,
( 1 0 0 6’s 6 6 6 … 6 ) 2 + 1 0 0 8’s 8 8 8 … 8 = 9 9 4’s 4 4 4 … 4 3 9 9 5’s 5 5 5 … 5 6 + 1 0 0 8’s 8 8 8 … 8 = 9 9 4’s 4 4 4 … 4 1 0 1 0’s 0 0 0 … 0 + 3 9 9 5’s 5 5 5 … 5 6 + 1 0 0 8’s 8 8 8 … 8 = 9 9 4’s 4 4 4 … 4 1 0 1 0’s 0 0 0 … 0 + 1 0 1 4’s 4 4 4 … 4 = 2 0 0 4’s 4 4 4 4 4 4 … 4
Proof of my claim above by induction (as requested by @Pi Han Goh )
Statement: Let P n be the proposition that
⎝ ⎛ n 6’s 6 6 6 … 6 ⎠ ⎞ 2 = ( n − 1 ) 4’s 4 4 4 … 4 3 ( n − 1 ) 5’s 5 5 5 … 5 6
for all positive integers n
Base Case: When n = 1 ,
LHS = 6 2 = 3 6 , RHS = 3 6 , LHS = RHS
Induction Hypothesis: Assume P k is true for some positive integer k . Consider P k + 1
LHS P k + 1
= ⎝ ⎛ ( k + 1 ) 6’s 6 6 6 … 6 ⎠ ⎞ 2 = ( 6 k 0’s 0 0 0 … 0 + k 6’s 6 6 6 … 6 ) 2 = 3 6 2 k 0’s 0 0 0 … 0 + 2 ( 6 k 0’s 0 0 0 … 0 ) ( k 6’s 6 6 6 … 6 ) + ( k − 1 ) 4’s 4 4 4 … 4 3 ( k − 1 ) 5’s 5 5 5 … 5 6 = 3 6 2 k 0’s 0 0 0 … 0 + 1 2 ( k 6’s 6 6 6 … 6 k 0’s 0 0 0 … 0 ) + ( k − 1 ) 4’s 4 4 4 … 4 3 ( k − 1 ) 5’s 5 5 5 … 5 6 = 3 6 2 k 0’s 0 0 0 … 0 + k 6’s 6 6 6 … 6 ( k + 1 ) 0’s 0 0 0 … 0 + 1 ( k − 1 ) 3’s 3 3 3 … 3 2 k 0’s 0 0 0 … 0 + ( k − 1 ) 4’s 4 4 4 … 4 3 ( k − 1 ) 5’s 5 5 5 … 5 6 = 3 6 2 k 0’s 0 0 0 … 0 + k 6’s 6 6 6 … 6 ( k + 1 ) 0’s 0 0 0 … 0 + 1 ( k − 1 ) 7’s 7 7 7 … 7 k 5’s 5 5 5 … 5 6 = 3 6 2 k 0’s 0 0 0 … 0 + 8 ( k − 2 ) 4’s 4 4 4 … 4 3 k 5’s 5 5 5 … 5 6 = k 4’s 4 4 4 … 4 3 k 5’s 5 5 5 … 5 6
= RHS P k + 1
Conclusion: By Mathematical Induction, since P 1 is true and P k is true implies P k + 1 is true, thus P n is true for all positive integers n
Therefore, we can generalize the pattern:
⎝ ⎛ n 6’s 6 6 6 … 6 ⎠ ⎞ 2 = ( n − 1 ) 4’s 4 4 4 … 4 3 ( n − 1 ) 5’s 5 5 5 … 5 6
You need to prove that this holds for all positive integer n . Hint : Induction.
Log in to reply
Request processed. Please verify
Log in to reply
Woah!!! This is very well explained! You're really great!
Similarly, one can show that
⎝ ⎛ n 3’s 3 3 3 … 3 ⎠ ⎞ 2 = ( n − 1 ) 4’s 1 1 1 … 1 0 ( n − 1 ) 8’s 8 8 8 … 8 9
And
⎝ ⎛ n 9’s 9 9 9 … 9 ⎠ ⎞ 2 = ( n − 1 ) 9’s 9 9 9 … 9 8 ( n − 1 ) 8’s 0 0 0 … 0 1
Note that there is a (slightly) simpler approach: Start with ( n times 6 6 6 6 . . . . . 6 ) 2 = 9 4 ( 1 0 n − 1 ) 2 , use ( a − b ) 2 = a 2 − 2 a b + b 2 .
Log in to reply
@Pi Han Goh – Thanks, but I'm not really great. I just happen to have the patience to bash or use tedious solutions
For your alternate approach, wouldn't it be simpler if we just proved this:
n a’s a a a … a = 9 a ( 1 0 n − 1 )
where a is an integer in the range 1 ≤ a ≤ 9 and n is a positive integer
Once this is proved, we just calculate the required answer, as shown in Alan's solution
Log in to reply
@Hung Woei Neoh – The question is here is "how to prove that 66666....6 = that number I've written above", which you have written up quite nicely.
Of course, Alan's solution is the best for this problem, but yours offers some alternative insight as well, so you shouldn't sell yourself short.
The quick and dirty way:
Firstly, the sum has easily more than 100 digits. We now only have 2 choices remaining. Notice how both addends are divisible by 4. Since 22 is not divisible by 4 but 44 is, by the divisibility test for 4, the only possible choice which could satisfy is 200 4’s 4 4 4 4 4 4 … 4 .
I too did in the same way !!
We can prove d d d d d d . . . . . . d = 9 d ( 1 0 n − 1 ) by following method:- d d d d . . . d = d ( 1 1 1 1 . . . 1 ) = d ( 1 0 n + . . . + 1 0 0 0 + 1 0 0 + 1 0 + 1 ) Now we know that 1 0 n + . . . + 1 0 0 + 1 0 + 1 is a geometric series. So, d ( 1 0 n + . . . 1 0 0 + 1 0 + 1 ) = 1 0 − 1 d ( 1 0 n − 1 ) = 9 d ( 1 0 n − 1 )
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Algebraic Manipulation Problem Solving - Basic
First we have n d’s d d d d d d … d = 9 d ( 1 0 n − 1 ) . Then, we want to calculate:
x = ( 9 6 ( 1 0 1 0 0 − 1 ) ) 2 + 9 8 ( 1 0 1 0 0 − 1 ) = 9 4 ( 1 0 1 0 0 − 1 ) 2 + 9 8 ( 1 0 1 0 0 − 1 )
x = 9 1 0 1 0 0 − 1 ( 4 ( 1 0 1 0 0 − 1 ) + 8 ) = 9 1 0 1 0 0 − 1 ( 4 ⋅ 1 0 1 0 0 + 4 )
x = 9 4 ( 1 0 1 0 0 − 1 ) ( 1 0 1 0 0 + 1 ) = 9 4 ( 1 0 2 0 0 − 1 )
x = 200 4’s 4 4 4 4 4 4 … 4