Optimizing a Circuit

The DC circuit above consists of two voltage sources V 1 V_1 and V 2 V_2 with internal resistances R 1 = 1 Ω R_1 = 1 \Omega and R 2 = 2 Ω R_2 = 2 \Omega respectively. There is a load R L = 3 Ω R_L = 3 \Omega connected in parallel with the sources.

V 1 V_1 and V 2 V_2 are variable quantities.

Let P 1 P_1 , P 2 P_2 , and P L P_L be the amounts of power in watts dissipated by R 1 R_1 , R 2 R_2 , and R L R_L respectively.

Given that P L = 10 P_L = 10 watts, determine the minimum possible value of P 1 + P 2 + P L P_1 + P_2 + P_L to 1 decimal place.


The answer is 12.2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Mark Hennings
Nov 12, 2016

If the current through R 1 R_1 is I 1 I_1 , and the current through R 2 R_2 is I 2 I_2 , then the current through R 3 R_3 must be I 1 + I 2 I_1+I_2 , and we have P 1 = I 1 2 P 2 = 2 I 2 2 P L = 3 ( I 1 + I 2 ) 2 P_1 \; = \; I_1^2 \hspace{1cm} P_2 \;=\; 2I_2^2 \hspace{1cm} P_L \; = \; 3(I_1+I_2)^2 Now P 1 + P 2 = I 1 2 + 2 I 2 2 = 1 3 [ ( I 1 2 I 2 ) 2 + 2 ( I 1 + I 2 ) 2 ] 2 3 ( I 1 + I 2 ) 2 = 2 9 P L P_1 + P_2 \; = \; I_1^2 + 2I_2^2 \; = \; \tfrac13\big[(I_1-2I_2)^2 + 2(I_1+I_2)^2\big] \; \ge \; \tfrac23(I_1+I_2)^2 \; = \; \tfrac29P_L with equality when I 1 = 2 I 2 I_1 =2I_2 . This current balance can be achieved by choosing V 1 = V 2 V_1 = V_2 . Thus P 1 + P 2 + P L 11 9 P L = 110 9 = 12.2 P_1 + P_2 + P_L \; \ge \; \tfrac{11}{9}P_L \; = \; \tfrac{110}{9} \; = \; \boxed{12.2}

Very nice, thanks. I haven't really learned how to think that way yet, but it's obviously very effective. I initially did it the Lagrange way. I've posted another solution based on "physical intuition" as well. It's pretty elegant in its own right.

Steven Chase - 4 years, 7 months ago

i dont really understand the Inequality of arithmetic and geometric means

jonas barbequefootmassage - 3 years, 2 months ago
Steven Chase
Nov 12, 2016

We've seen some nice formal solutions already (see Mark H and Chew-Seong). I will also present an "intuitive physical approach". This solution is not strictly legitimate (a priori), but it works, and it is borne out by the formal solutions.

1) Suppose we'll acheive maximum efficiency with a source that doesn't dissipate any power internally while unloaded.

2) Requirement (1) mandates that V 1 = V 2 V1 = V2 , so as to have zero circulating current in the unloaded case.

3) If V 1 = V 2 V1 = V2 , the equivalent source can be represented as a Thevenin equivalent consisting of a source V V in series with a resistance of R 1 R 2 R 1 + R 2 \frac{R_1 R_2}{R_1 + R_2} . Call this equivalent resistance R T H R_{TH} . R T H = 2 3 R_{TH} = \frac{2}{3} .

4) When the Thevenin equivalent is connected to the load, the load voltage V L = V × R L R L + R T H V_L = V \times \frac{R_L}{R_L + R_{TH}} (because of the voltage divider principle). This works out to V L = 9 11 V V_{L} = \frac{9}{11} V .

5) The load power can be expresed as V L 2 R L = 10 \frac{V_L^{2}}{R_L} = 10 . Since R L = 3 R_L = 3 , V L = 30 = 9 11 V V_L = \sqrt{30} = \frac{9}{11} V

6) V = 11 30 9 V = \frac{11 \sqrt{30}}{9}

7) The total power then works out to V 2 R T H + R L = 121 × 30 81 × ( 2 3 + 3 ) 12.2 \frac{V^{2}}{R_{TH} + R_L} = \frac{121 \times 30}{81 \times (\frac{2}{3} + 3) } \approx 12.2

I think this is perfectly correct approach based on Thevenin's Theorem. A nice electrical way of looking at the problem. +1).

Niranjan Khanderia - 4 years, 6 months ago

I got everything same. Just my calulation error at last step

Md Zuhair - 2 years, 11 months ago
Chew-Seong Cheong
Nov 12, 2016

Let the current through R 1 R_1 , R 2 R_2 and R L R_L due to V 1 V_1 alone be I 11 I_{11} , I 21 I_{21} and I L 1 I_{L1} respectively and those due to V 2 V_2 be I 12 I_{12} , I 22 I_{22} and I L 2 I_{L2} . Then the resultant current I 1 = I 11 I 12 I_1 = I_{11} - I_{12} , I 2 = I 21 I 22 I_2 = I_{21} - I_{22} and I L = I L 1 + I L 2 I_L = I_{L1} + I_{L2}

And we have:

I 11 = V 1 R 1 + R 2 R L = V 1 1 + 2 3 = V 1 1 + 2 × 3 2 + 3 = 5 V 1 11 \begin{aligned} I_{11} & = \frac {V_1}{R_1+R_2||R_L} = \frac {V_1}{1+2||3} = \frac {V_1}{1+\frac {2\times 3}{2+3}} = \frac {5V_1}{11} \end{aligned}

By current division, I 21 = 3 5 I 11 = 3 V 1 11 I_{21} = \dfrac 35 I_{11} = \dfrac {3V_1}{11} and I L 1 = 2 5 I 11 = 2 V 1 11 I_{L1} = \dfrac 25 I_{11} = \dfrac {2V_1}{11} .

Similarly, I 22 = V 2 R 2 + R 1 R L = V 2 2 + 1 3 = V 2 2 + 1 × 3 1 + 3 = 4 V 2 11 I_{22} = \dfrac {V_2}{R_2+R_1||R_L} = \dfrac {V_2}{2+1||3} = \dfrac {V_2}{2+\frac {1\times 3}{1+3}} = \dfrac {4V_2}{11}

By current division, I 12 = 3 4 I 22 = 3 V 2 11 I_{12} = \dfrac 34 I_{22} = \dfrac {3V_2}{11} and I L 2 = 1 4 I 22 = V 2 11 I_{L2} = \dfrac 14 I_{22} = \dfrac {V_2}{11} .

Now, we have:

P 1 + P 2 + P L = I 1 2 R 1 + I 2 2 R 2 + I R 2 R L = 1 ( I 11 I 12 ) 2 + 2 ( I 21 I 22 ) 2 + 3 ( I L 1 + I L 2 ) 2 = ( 5 V 1 11 3 V 2 11 ) 2 + 2 ( 3 V 1 11 4 V 2 11 ) 2 + 3 ( 2 V 1 11 + V 2 11 ) 2 = ( 25 V 1 2 30 V 1 V 2 + 9 V 2 2 ) + ( 18 V 1 2 48 V 1 V 2 + 32 V 2 2 ) + ( 12 V 1 2 + 12 V 1 V 2 + 3 V 2 2 ) 121 = 55 V 1 2 66 V 1 V 2 + 44 V 2 2 121 \begin{aligned} P_1+P_2+P_L & = I_1^2R_1 + I_2^2R_2 + I_R^2R_L \\ & = 1(I_{11} - I_{12})^2 + 2(I_{21} - I_{22})^2 + 3(I_{L1} + I_{L2})^2 \\ & = \left(\frac {5V_1}{11}-\frac {3V_2}{11}\right)^2 + 2\left(\frac {3V_1}{11}-\frac {4V_2}{11}\right)^2 + 3\left(\frac {2V_1}{11} + \frac {V_2}{11}\right)^2 \\ & = \frac {(25V_1^2-30V_1V_2+9V_2^2) + (18V_1^2-48V_1V_2+32V_2^2) + (12V_1^2+12V_1V_2+3V_2^2)}{121} \\ & = \frac {55V_1^2-66V_1V_2+44V_2^2}{121} \end{aligned}

It is given that P L = 12 V 1 2 + 12 V 1 V 2 + 3 V 2 2 121 = 10 P_L = \dfrac {12V_1^2+12V_1V_2+3V_2^2}{121} = 10 watts and we need to find the minimum of P 1 + P 2 + P L P_1+P_2+P_L we can use Lagrange multipliers as follows.

F ( V 1 , V 2 , λ ) = 55 V 1 2 66 V 1 V 2 + 44 V 2 2 λ ( 12 V 1 2 + 12 V 1 V 2 + 3 V 2 2 1210 ) F V 1 = 110 V 1 66 V 2 λ ( 24 V 1 + 12 V 2 ) F V 2 = 66 V 1 + 88 V 2 λ ( 12 V 1 + 6 V 2 ) F λ = 12 V 1 2 + 12 V 1 V 2 + 3 V 2 2 1210 \begin{aligned} F(V_1,V_2,\lambda) & = 55V_1^2-66V_1V_2+44V_2^2 - \lambda (12V_1^2+12V_1V_2+3V_2^2-1210) \\ \frac {\partial F}{\partial V_1} & = 110V_1 - 66V_2 - \lambda (24V_1 + 12V_2) \\ \frac {\partial F}{\partial V_2} & = - 66V_1 + 88V_2 - \lambda (12V_1+6V_2) \\ \frac {\partial F}{\partial \lambda} & = 12V_1^2+12V_1V_2+3V_2^2-1210 \end{aligned}

\(\begin{array} {} \dfrac {\partial F}{\partial V_1} = 0 & \implies 55V_1 - 33V_2 = \lambda (12V_1+6V_2) &...(1) \\ \dfrac {\partial F}{\partial V_2} = 0 & \implies - 66V_1 + 88V_2 = \lambda (12V_1+6V_2) &...(2) \\ (1)-(2): & \implies 121V_1 - 121V_2 = 0 \\ & \implies V_1 = V_2 \\ \dfrac {\partial F}{\partial \lambda} = 0 & \implies 12V_1^2+12V_1^2+3V_1^2 = 1210 \\ & \implies 27V_1^2 = 1210 \end{array} \)

Therefore, the minimum P 1 + P 2 + P L P_1+P_2+P_L is as below.

P 1 + P 2 + P L = 55 V 1 2 66 V 1 V 2 + 44 V 2 2 121 = 33 V 1 2 121 = 33 × 1210 27 × 121 12.2 \begin{aligned} P_1+P_2+P_L & = \frac {55V_1^2-66V_1V_2+44V_2^2}{121} = \frac {33 V_1^2}{121} = \frac {33\times 1210}{27 \times 121} \approx \boxed{12.2} \end{aligned}

Very nice, thanks. I initially did it the Lagrange way as well. I've posted another solution based on "physical intuition" as well. It's pretty elegant in its own right.

Steven Chase - 4 years, 7 months ago

Log in to reply

Thanks, I was think about solving it using circuit theory but failed. Not really failed. I should have trusted the circuit theory as done by you.

Chew-Seong Cheong - 4 years, 7 months ago

Lagrange multipliers identify local extrema; how are you going to show that this is (specifically) a global minimum?

Mark Hennings - 4 years, 7 months ago

Log in to reply

I can't find a way. Can you give a hint?

Chew-Seong Cheong - 4 years, 7 months ago

Log in to reply

That's why, ultimately, I did not go down the LM route. I found a purely algebraic approach to equations derived from Kirchoff's Laws; Steven took a intuition-based approach.

Mark Hennings - 4 years, 7 months ago

Log in to reply

@Mark Hennings OK, thanks. I thought it could not get the solution from circuit theory.

Chew-Seong Cheong - 4 years, 7 months ago

@Mark Hennings Truth be told, I solved this problem using intuition (circuit theory), Lagrange multipliers, and a hill-climbing algorithm before posting it. Can't ever be too sure.

Steven Chase - 4 years, 7 months ago

Let the respective currents voltages be I 1 , I 2 , I L a n d V L . I L = 10 3 = I 1 + I 2 . I 2 = 10 3 I 1 . \text{Let the respective currents voltages be } I_1,\ I_2,\ I_L\ \ and\ V_L.\\ I_L=\sqrt{\dfrac{10} 3}=I_1+I_2.\ \ \ \implies\ I_2=\sqrt{\dfrac{10} 3} - I_1.\\ Power loss in internal resistance = I 1 2 1 + ( 10 3 2 10 3 I 1 + I 1 2 ) 2. \text{Power loss in internal resistance }=\ I_1^2*1+(\frac {10} 3 -2*\sqrt{\frac{10} 3}*I_1+I_1^2)*2.\\ D i f f e r e n t i a t i n g a n d e q u a t i n g t o z e r o f o r m i n i m u m , 6 I 1 2 4 10 3 = 0. Differentiating \ and\ equating\ to\ zero\ for\ minimum, 6I_1^2 - 4*\sqrt{\dfrac{10} 3}= 0.\\ I 1 = 2 3 10 3 . P 1 + P 2 + P L = I 1 2 1 + I 2 2 2 + 10 = 4 9 10 3 + ( 10 3 2 3 10 3 ) 2 + 10 = 40 27 + 20 27 + 10 = 12.222 \implies\ I_1=\dfrac 2 3 *\sqrt{\dfrac{10} 3}.\\ P_1+P_2+P_L=I_1^2*1 + I_2^2*2 + 10 \\ =\dfrac 4 9 *\dfrac{10}3 +\left (\sqrt{\dfrac{10} 3} - \dfrac 2 3 *\sqrt{\dfrac{10} 3} \right ) ^2 + 10=\ \dfrac{40}{27} + \dfrac{20}{27} + 10\ =\Large\ \ \ \color{#D61F06}{12.222}

O R \ \ OR\ \ A better logical solution is as under.
L e t I 1 , I 2 , I L , b e r e s p e c t i v e c u r r e n t s , a n d V L l o a d v o l t a g e b e t w e e n A B . T h e e n d s o f R 1 a n d R 2 m e e t a t A , s o a r e t h e t i v e s o f V 1 a n d V 2 m e e t a t B . f o r m i n i m u m p o w e r l o s s , c u r r e n t f l o w a t n o l o a d i s a v o i d e d b y m a k i n g V 1 = V 2 . S o p d b e t w e e n + t i v e t e r m i n a l s a n d A , m u s t b e e q u a l e . I 1 R 1 = I 2 R 2 , I 1 = 2 I 2 . I 1 + I 2 = 3 2 I 1 = I L = 10 3 I 1 = 2 3 10 3 . P 1 + P 2 + P L = I 1 2 1 + I 2 2 2 + 10 = 4 9 10 3 + 1 9 10 3 2 + 10 = 12.222 Let\ I_1,\ I_2,\ I_L,\ be\ respective \ currents,\ and\ V_L\ load\ voltage\ between\ AB.\\ The\ ends\ of\ R_1\ and\ R_2\ meet\ at\ A,\ \ so\ are\ the\ -tives\ of\ V_1\ and\ V_2\ meet\ at\ B.\\ \therefore\ for\ minimum\ power\ loss,\ current\ flow\ at\ no\ load\ is\ avoided\ by\ making \ V_1 = V_2.\\ So\ pd\ between\ + tive\ terminals\ and\ A,\ must\ be\ equale. \\ \implies\ \ \ I_1*R_1=I_2*R_2,\ \ \implies\ I_1 = 2*I_2.\\ \therefore\ I_1 + I_2 = \frac 3 2*I_1=I_L=\ \sqrt{\dfrac{10} 3}\ \ \ \implies\ I_1=\frac 2 3*\sqrt{\dfrac{10} 3}.\\ P_1+P_2+P_L=I_1^2*1 + I_2^2*2 + 10 = \dfrac 4 9 *\dfrac{10}3 +\dfrac 1 9 *\dfrac{10}3*2 + 10 \ \ \ =\Large\ \ \ \color{#D61F06}{12.222}

I like how you went the calculus route without having to resort to Lagrange multipliers.

Steven Chase - 4 years, 6 months ago

Log in to reply

Thank you.

Niranjan Khanderia - 4 years, 6 months ago
Leonardo Joau
Nov 27, 2016

Let i L i_{L} be the current passing through R L R_{L} .

R L i L 2 = 10 R_{L}i_{L}^2=10

i L = 10 3 i_{L}=\sqrt{\frac{10}{3}}

Let i 1 i_{1} and i 2 i_{2} be the currents passing through R 1 R_{1} and R 2 R_{2} , respectively.

Since V 1 V_{1} and V 2 V_{2} are variable quantities we can create a sistem of equations and find i 1 i_{1} and i 2 i_{2} in function of V 1 V_{1} and V 2 V_{2} so i 1 i_{1} and i 2 i_{2} can assume any value.

So, to find the minimum value of P 1 + P 2 P_{1}+P_{2} we can use the Cauchy-Schwarz inequality:

( i 1 + i 2 ) 2 ( i 1 2 + 2 i 2 2 ) ( 1 + 1 2 ) (i_{1}+i_{2})^2\le(i_{1}^2+2i_{2}^2)(1+\frac{1}{2})

( 10 3 ) 2 3 2 ( P 1 + P 2 ) (\sqrt{\frac{10}{3}})^2\le\frac{3}{2}(P_{1}+P_{2})

20 9 P 1 + P 2 \frac{20}{9}\le{P_{1}+P_{2}}

So, the minimum vale of P 1 + P 2 + P L P_{1}+P_{2}+P_{L} is 10 + 20 9 = 12.22 10+\frac{20}{9}=12.22

Carsten Meyer
Aug 25, 2019

Another way using V 1 , V 2 V_1,\:V_2 instead of the currents to optimize the dissipated power. First calculate all currents using loop analysis. Let I 1 , I 2 I_1,\:I_2 be the currents through R 1 , R 2 R_1,\:R_2 flowing upwards: ( 4 3 3 5 ) Ω ( I 1 I 2 ) = ( R 1 + R L R L R L R 2 + R L ) ( I 1 I 2 ) = ! ( V 1 V 2 ) ( I 1 I 2 ) = 1 S 11 ( 5 V 1 3 V 2 3 V 1 + 4 V 2 ) I L = I 1 + I 2 = 1 S 11 ( 2 V 1 + V 2 ) \begin{gathered} \begin{pmatrix} 4&3\\ 3&5 \end{pmatrix}\si{\ohm}\cdot\begin{pmatrix} I_1\\I_2 \end{pmatrix}=\begin{pmatrix} R_1+R_L&R_L\\ R_L&R_2+R_L \end{pmatrix}\cdot\begin{pmatrix} I_1\\I_2 \end{pmatrix}\overset{!}{=}\begin{pmatrix} V_1\\V_2 \end{pmatrix}\quad\Rightarrow\quad\begin{pmatrix} I_1\\I_2 \end{pmatrix}=\frac{\SI{1}{\siemens}}{11}\begin{pmatrix} 5V_1-3V_2\\ -3V_1+4V_2 \end{pmatrix}\\ I_L=I_1+I_2=\frac{\SI{1}{\siemens}}{11}(2V_1+V_2) \end{gathered}

Use P L = ! 10 W P_L\overset{!}{=}\SI{10}{\watt} : P L = R L I L 2 = 3 S 1 1 2 ( 2 V 1 + V 2 ) 2 = ! 10 W V 2 = 2 V 1 ± 11 10 3 V ( ) \displaystyle\begin{aligned} P_L=R_LI_L^2=\frac{\SI{3}{\siemens}}{11^2}(2V_1+V_2)^2\overset{!}{=}\SI{10}{\watt}\quad\Rightarrow\quad V_2=-2V_1\pm 11\sqrt{\frac{10}{3}}\si{\volt}&&(*) \end{aligned}

Calculate the dissipated power in all resistors. Complete the square in the third step: P L + P 1 + P 2 = P L + R 1 I 1 2 + R 2 I 2 2 = 10 W + 1 S 1 1 2 ( 5 V 1 3 V 2 ) 2 + 2 S 1 1 2 ( 3 V 1 + 4 V 2 ) 2 = ( ) 10 W + 1 1 2 S 1 1 2 ( 3 V 1 2 22 10 3 V 1 V + 410 3 V 2 ) = 10 W + 3 S ( ( V 1 11 3 10 3 V ) 2 + 410 9 V 2 1 210 27 V 2 ) 10 W + 3 S ( 410 9 V 2 1 210 27 V 2 ) = 110 9 W 12.2 W \displaystyle\begin{aligned} P_L+P_1+P_2&=P_L+R_1I_1^2+R_2I_2^2=\SI{10}{\watt}+\frac{\SI{1}{\siemens}}{11^2}(5V_1-3V_2)^2+\frac{\SI{2}{\siemens}}{11^2}(-3V_1+4V_2)^2&&\\ &\underset{(*)}{=}\SI{10}{\watt}+\frac{\SI{\cancel{11^2}}{\siemens}}{\cancel{11^2}}\left( 3V_1^2\mp 22\sqrt{\frac{10}{3}}V_1\si{\volt}+\SI{\frac{410}{3}}{\volt^2} \right)\\ &=\SI{10}{\watt}+\SI{3}{\siemens}\left( \left( V_1\mp\frac{11}{3}\sqrt{\frac{10}{3}}\si{\volt} \right)^2+\SI{\frac{410}{9}}{\volt^2}-\SI{\frac{1210}{27}}{\volt^2} \right)\\ &\geq\SI{10}{\watt}+\SI{3}{\siemens}\left( \SI{\frac{410}{9}}{\volt^2}-\SI{\frac{1210}{27}}{\volt^2} \right)=\SI{\frac{110}{9}}{\watt}\approx\boxed{\SI{12.2}{\watt}} \end{aligned}

Rem.: The voltages V 1 , V 2 V_1,\:V_2 for my solution are V 1 = ± 11 3 10 3 V = ( ) V 2 \displaystyle V_1=\pm\frac{11}{3}\sqrt{\frac{10}{3}}\si{\volt}\underset{(*)}{=}V_2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...