∫ 0 π / 2 1 − sin 2 x d x
If the integral above can be written as a b − c , where a , b and c are positive integers with b square-free, find a + b + c .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Well explained, simplifying the trigonometric function first makes it easier to evaluate.
Nice solution the only thing missing is a+b+c = 2+2+2= 6 ;)
Log in to reply
Haha! I tend to not say it! Once the integral is finished, that is very easy. Someone who understands the solution is assumed to know how to do it! :P
First of all, by symmetry of the sine function, I = ∫ 0 π / 2 1 − sin 2 x d x = 2 ∫ 0 π / 4 1 − sin 2 x d x .
Switch variables: u = sin 2 x so that x = 2 1 arcsin u and d x = 1 / 2 1 − u 2 d u : I = 2 ∫ 0 1 1 − u 2 1 − u 2 d u = ∫ 0 1 1 − u 2 1 − u d u = ∫ 0 1 1 + u d u = [ 2 1 + u ] 0 1 = 2 2 − 2 . Thus the answer is 2 + 2 + 2 = 6 .
Nice and simple . +1 !@
Pls show the solution when we change sin 2 x to cos (pi/2 -2x) and then to cancel 1 we use the formula cos 2 A= 1- 2 sin^2 A
\begin{aligned} I & = \int_0^{\frac{\pi}{2}} \sqrt{1-\sin (2x)} \ dx \\ & = \int_0^{\frac{\pi}{2}} \sqrt{1-\cos \left(\color{#3D99F6}{\frac{\pi}{2} - 2x} \right)} \ dx \quad \quad \small \color{#3D99F6}{\text{Let }2u = \frac{\pi}{2} - 2x \implies du = - dx} \\ & = \int_{-\frac{\pi}{4}}^\frac{\pi}{4} \sqrt{1-\cos \left(\color{#3D99F6}{2u} \right)} \ du \quad \quad \small \color{#3D99F6}{\text{Since } \sqrt{1-\cos \left(2u \right)} \text{ is an even function}} \\ & = \color{#3D99F6}{2} \int_\color{#3D99F6}{0}^\frac{\pi}{4} \sqrt{1-\cos \left(2u \right)} \ du \\ & = 2 \int_0^\frac{\pi}{4} \sqrt{1-2\cos ^2 u +1} \ du \\ & = 2 \int_0^\frac{\pi}{4} \sqrt{2(1-\cos ^2 u)} \ du \\ & = 2\sqrt{2} \int_0^\frac{\pi}{4} \sin u \ du \\ & = 2\sqrt{2} (-\cos u) \ \bigg|_0^\frac{\pi}{4} \\ & = 2\sqrt{2} \left(-\frac{1}{\sqrt{2}} + 1\right) \\ & = 2\sqrt{2} - 2 \end{aligned}
⟹ a + b + c = 2 + 2 + 2 = 6
Another solution
I = ∫ 0 2 π 1 − sin ( 2 x ) d x = ∫ 0 2 π 1 − 1 + tan 2 x 2 tan x d x = ∫ 0 2 π 1 + tan 2 x 1 + tan 2 x − 2 tan x d x = ∫ 0 2 π sec 2 x ( tan x − 1 ) 2 d x = ∫ 0 2 π ∣ ∣ ∣ ∣ sec x tan x − 1 ∣ ∣ ∣ ∣ d x = ∫ 0 2 π ∣ sin x − cos x ∣ d x = 2 ∫ 0 4 π ( cos x − sin x ) d x = 2 ( sin x + cos x ) ∣ ∣ ∣ ∣ 0 4 π = 2 2 − 2
⟹ a + b + c = 2 + 2 + 2 = 6
Note that 1 − cos 2 θ = ∣ sin θ ∣ . We have to check the range before removing the modulus sign.
Some little easier method? I have a little easier one!
Stunning and cool! @Kishore S Shenoy , the title?!?!
Log in to reply
Simply for fun. 😀😁😂
Log in to reply
Its nice...
The second one is nice (+1)
Cool sir.!! + 1....your solution rocks like always! + 1
Sir actually i don't know why u changed the limit (the blue color)...plz help me learn... @Chew-Seong Cheong
∫ 0 π / 2 1 − sin 2 x d x
= ∫ 0 π / 2 1 + sin 2 x 1 − sin 2 x 1 + sin 2 x d x
= ∫ 0 π / 2 1 + sin 2 x 1 − sin 2 2 x d x
= ∫ 0 π / 2 1 + sin 2 x ∣ cos 2 x ∣ d x
= 2 ∫ 0 π / 4 1 + sin 2 x cos 2 x d x
Let u = 1 + sin 2 x then d x d u = 2 cos 2 x
= ∫ x = 0 x = π / 4 u d u
= 2 u ∣ ∣ x = 0 x = π / 4
= 2 1 + sin 2 x ∣ ∣ ∣ 0 π / 4 = 2 2 − 2 → 2 + 2 + 2 = 6
All trying different paths to reach the answer. It's so cool to watch different flips in solving. Nice solution!
Amazing!! +1 !!
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Integration of Trigonometric Functions - Intermediate
Let I = ∫ 0 π / 2 1 − sin 2 x d x
Now, sin 2 x = 2 sin x cos x 1 = sin 2 x + cos 2 x ⇒ 1 − sin 2 x = ( sin x − cos x ) 2 ⇒ 1 − sin 2 x = ∣ sin x − cos x ∣
So, I = ∫ 0 π / 2 ∣ sin x − cos x ∣ d x = ∫ 0 π / 4 ( cos x − sin x ) d x + ∫ π / 4 π / 2 ( sin x − cos x ) d x = [ sin x + cos x ] 0 π / 4 + [ cos x + sin x ] π / 2 π / 4 = 2 1 + 2 1 − 1 + 2 1 + 2 1 − 1 = 2 2 − 2