Naughty Radical

Calculus Level 4

0 π / 2 1 sin 2 x d x \large\int_0^{\pi /2} \sqrt{1- \sin2x} \, dx

If the integral above can be written as a b c a\sqrt b - c , where a , b a,b and c c are positive integers with b b square-free, find a + b + c a+b+c .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Kishore S. Shenoy
May 22, 2016

Relevant wiki: Integration of Trigonometric Functions - Intermediate

Let I = 0 π / 2 1 sin 2 x d x \large I = \int_0^{\pi /2} \sqrt{1- \sin2x} \, dx

Now, sin 2 x = 2 sin x cos x 1 = sin 2 x + cos 2 x 1 sin 2 x = ( sin x cos x ) 2 1 sin 2 x = sin x cos x \large\sin 2x = 2\sin x\cos x\\\large1 = \sin^2x+\cos^2x\\\large\Rightarrow 1-\sin 2x = \left(\sin x-\cos x\right)^2\\\large\Rightarrow \sqrt{1-\sin 2x} = \large\left|\sin x- \cos x\right|

So, I = 0 π / 2 sin x cos x d x = 0 π / 4 ( cos x sin x ) d x + π / 4 π / 2 ( sin x cos x ) d x = [ sin x + cos x ] 0 π / 4 + [ cos x + sin x ] π / 2 π / 4 = 1 2 + 1 2 1 + 1 2 + 1 2 1 = 2 2 2 \displaystyle\large \begin{aligned}I &= \int_0^{\pi/2} \left|\sin x - \cos x\right|\, dx\\&=\int_0^{\pi/4} \left( \cos x- \sin x \right) \, dx + \int_{\pi/4}^{\pi/2} \left( \sin x - \cos x \right) \, dx\\ &=\left[\sin x + \cos x\right]_0^{ \pi/4} +\left[\cos x+\sin x \right]_{\pi/2}^{\pi/4}\\&= \dfrac1{\sqrt 2}+\dfrac1{\sqrt 2}-1+\dfrac1{\sqrt 2}+\dfrac1{\sqrt 2}-1 \\&= \boxed{2\sqrt2-2}\end{aligned}

Moderator note:

Well explained, simplifying the trigonometric function first makes it easier to evaluate.

Nice solution the only thing missing is a+b+c = 2+2+2= 6 ;)

Ashish Menon - 5 years ago

Log in to reply

Haha! I tend to not say it! Once the integral is finished, that is very easy. Someone who understands the solution is assumed to know how to do it! :P

Kishore S. Shenoy - 5 years ago
Arjen Vreugdenhil
May 22, 2016

First of all, by symmetry of the sine function, I = 0 π / 2 1 sin 2 x d x = 2 0 π / 4 1 sin 2 x d x . \mathfrak I = \int_0^{\pi/2} \sqrt{1 - \sin 2x}\:dx = 2\int_0^{\pi/4} \sqrt{1 - \sin 2x}\:dx.

Switch variables: u = sin 2 x u = \sin 2x so that x = 1 2 arcsin u x = \tfrac12\arcsin u and d x = 1 / 2 1 u 2 d u dx = 1/2\sqrt{1-u^2}\:du : I = 2 0 1 1 u d u 2 1 u 2 = 0 1 1 u 1 u 2 d u = 0 1 d u 1 + u = [ 2 1 + u ] 0 1 = 2 2 2. \mathfrak I = 2\int_0^1 \sqrt{1-u}\:\frac{du}{2\sqrt{1-u^2}} = \int_0^1 \frac{\sqrt{1-u}}{\sqrt{1-u^2}}\:du \\ = \int_0^1 \frac{du}{\sqrt{1+u}} = \left[2\sqrt{1+u}\right]_0^1 \\ = 2\sqrt 2 - 2. Thus the answer is 2 + 2 + 2 = 6 2 + 2 + 2 = \boxed{6} .

Nice and simple . +1 !@

Rishabh Tiwari - 5 years ago

Pls show the solution when we change sin 2 x to cos (pi/2 -2x) and then to cancel 1 we use the formula cos 2 A= 1- 2 sin^2 A

Saanika Gupta - 5 years ago

Log in to reply

But there is no need to do that... :)

Arjen Vreugdenhil - 5 years ago
Chew-Seong Cheong
May 22, 2016

\begin{aligned} I & = \int_0^{\frac{\pi}{2}} \sqrt{1-\sin (2x)} \ dx \\ & = \int_0^{\frac{\pi}{2}} \sqrt{1-\cos \left(\color{#3D99F6}{\frac{\pi}{2} - 2x} \right)} \ dx \quad \quad \small \color{#3D99F6}{\text{Let }2u = \frac{\pi}{2} - 2x \implies du = - dx} \\ & = \int_{-\frac{\pi}{4}}^\frac{\pi}{4} \sqrt{1-\cos \left(\color{#3D99F6}{2u} \right)} \ du \quad \quad \small \color{#3D99F6}{\text{Since } \sqrt{1-\cos \left(2u \right)} \text{ is an even function}} \\ & = \color{#3D99F6}{2} \int_\color{#3D99F6}{0}^\frac{\pi}{4} \sqrt{1-\cos \left(2u \right)} \ du \\ & = 2 \int_0^\frac{\pi}{4} \sqrt{1-2\cos ^2 u +1} \ du \\ & = 2 \int_0^\frac{\pi}{4} \sqrt{2(1-\cos ^2 u)} \ du \\ & = 2\sqrt{2} \int_0^\frac{\pi}{4} \sin u \ du \\ & = 2\sqrt{2} (-\cos u) \ \bigg|_0^\frac{\pi}{4} \\ & = 2\sqrt{2} \left(-\frac{1}{\sqrt{2}} + 1\right) \\ & = 2\sqrt{2} - 2 \end{aligned}

a + b + c = 2 + 2 + 2 = 6 \implies a + b + c = 2+2+2 = \boxed{6}


Another solution

I = 0 π 2 1 sin ( 2 x ) d x = 0 π 2 1 2 tan x 1 + tan 2 x d x = 0 π 2 1 + tan 2 x 2 tan x 1 + tan 2 x d x = 0 π 2 ( tan x 1 ) 2 sec 2 x d x = 0 π 2 tan x 1 sec x d x = 0 π 2 sin x cos x d x = 2 0 π 4 ( cos x sin x ) d x = 2 ( sin x + cos x ) 0 π 4 = 2 2 2 \begin{aligned} I & = \int_0^{\frac{\pi}{2}} \sqrt{1-\sin (2x)} \ dx \\ & = \int_0^{\frac{\pi}{2}} \sqrt{1-\frac{2 \tan x}{1+\tan^2 x}} \ dx \\ & = \int_0^{\frac{\pi}{2}} \sqrt{\frac{1+\tan^2 x - 2 \tan x}{1+\tan^2 x}} \ dx \\ & = \int_0^{\frac{\pi}{2}} \sqrt{\frac{(\tan x-1)^2}{\sec^2 x}} \ dx \\ & = \int_0^{\frac{\pi}{2}} \left| \frac{\tan x-1}{\sec x} \right| \ dx \\ & = \int_0^{\frac{\pi}{2}} \left| \sin x - \cos x \right| \ dx \\ & = \color{#3D99F6}{2} \int_0^{\color{#3D99F6}{\frac{\pi}{4}}} (\cos x-\sin x) \ dx \\ & = 2(\sin x + \cos x) \ \bigg|_0^\frac{\pi}{4} \\ & = 2\sqrt{2} - 2 \end{aligned}

a + b + c = 2 + 2 + 2 = 6 \implies a + b + c = 2+2+2 = \boxed{6}

Moderator note:

Note that 1 cos 2 θ = sin θ \sqrt{ 1- \cos^2 \theta } = | \sin \theta | . We have to check the range before removing the modulus sign.

Some little easier method? I have a little easier one!

Kishore S. Shenoy - 5 years ago

Stunning and cool! @Kishore S Shenoy , the title?!?!

Ashish Menon - 5 years ago

Log in to reply

Simply for fun. 😀😁😂

Kishore S. Shenoy - 5 years ago

Log in to reply

Its nice...

Ashish Menon - 5 years ago

Log in to reply

@Ashish Menon Haha thanks!

Kishore S. Shenoy - 5 years ago

The second one is nice (+1)

Ashish Menon - 5 years ago

Cool sir.!! + 1....your solution rocks like always! + 1

Rishabh Tiwari - 5 years ago

Sir actually i don't know why u changed the limit (the blue color)...plz help me learn... @Chew-Seong Cheong

Istiak Reza - 5 years ago
Hobart Pao
May 22, 2016

0 π / 2 1 sin 2 x d x \displaystyle \int_{0}^{\pi/2} \sqrt{1 - \sin 2x} \, dx

= 0 π / 2 1 sin 2 x 1 + sin 2 x 1 + sin 2 x d x \displaystyle = \int_{0}^{\pi/2} \dfrac{\sqrt{1- \sin 2x} \sqrt{1 + \sin 2x}}{\sqrt{1+\sin 2x}} \, dx

= 0 π / 2 1 sin 2 2 x 1 + sin 2 x d x \displaystyle = \int_{0}^{\pi/2} \dfrac{\sqrt{1 - \sin^{2} 2x }}{\sqrt{1 + \sin 2x}}\, dx

= 0 π / 2 cos 2 x 1 + sin 2 x d x \displaystyle = \int_{0}^{\pi/2} \dfrac{\left| \cos 2x \right| }{\sqrt{1+ \sin 2x }} \, dx

= 2 0 π / 4 cos 2 x 1 + sin 2 x d x \displaystyle = 2 \int_{0}^{\pi/4} \dfrac{\cos 2x}{\sqrt{1 + \sin 2x}} \, dx

Let u = 1 + sin 2 x u = 1 + \sin 2x then d u d x = 2 cos 2 x \dfrac{du}{dx} = 2 \cos 2x

= x = 0 x = π / 4 d u u \displaystyle = \int_{x = 0}^{x = \pi/4} \dfrac{du}{\sqrt{u}}

= 2 u x = 0 x = π / 4 \displaystyle = \left. 2\sqrt{u} \right|_{x = 0}^{x= \pi/4}

= 2 1 + sin 2 x 0 π / 4 = 2 2 2 2 + 2 + 2 = 6 \displaystyle = \left. 2 \sqrt{1 + \sin 2x} \right|_{0}^{\pi/4} = \boxed{2 \sqrt{2} - 2} \to 2+2+2 = \boxed{6}

All trying different paths to reach the answer. It's so cool to watch different flips in solving. Nice solution!

Kishore S. Shenoy - 5 years ago

Log in to reply

Thanks! Nice problem.

Hobart Pao - 5 years ago

Amazing!! +1 !!

Rishabh Tiwari - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...