Particle in a time varying curve

A particle moves along the curve such that its position vector is given as a function of time as R = ( t 3 4 t ) i ^ + ( t 2 + 4 t ) j ^ + ( 8 t 2 3 t 3 ) k ^ \vec{R}=(t^3-4t) \hat { i } +(t^2+4t) \hat { j }+(8t^2-3t^3) \hat { k } where t t denotes time. The magnitude of acceleration along the normal at time t = 2 t=2 can be represented as P Q P\sqrt{Q}

where P , Q P,Q are integers and Q Q square free.

Find P + Q P+Q


The answer is 75.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rohit Ner
May 11, 2016

v = ( 3 t 2 4 ) i ^ + ( 2 t + 4 ) j ^ + ( 16 t 9 t 2 ) k ^ a = ( 6 t ) i ^ + ( 2 ) j ^ + ( 16 18 t ) k ^ \begin{aligned} \vec{v}&=\left(3{t}^2-4\right)\hat{i}+\left(2t+4\right)\hat{j}+\left(16t-9{t}^2 \right)\hat{k}\\\vec{a}&=\left(6t\right)\hat{i}+\left(2\right)\hat{j}+\left(16-18t\right)\hat{k}\end{aligned}

At t = 2 t=2

v = 8 i ^ + 8 j ^ 4 k ^ a = 12 i ^ + 2 j ^ 20 k ^ \begin{aligned} \vec{v}&=8\hat{i}+8\hat{j}-4\hat{k}\\\vec{a}&=12\hat{i}+2\hat{j}-20\hat{k}\end{aligned}

Velocity vector is always tangent to the curve of motion. Magnitude of acceleration along tangent is given by

a t = a v ^ = a v v = 16 \begin{aligned}a_t &=\vec{a}\cdot\hat{v}\\&=\dfrac{\vec{a}\cdot\vec{v}}{\left| \vec{v} \right|}\\&=16\end{aligned}

Magnitude of acceleration along the normal is given by

a n = a 2 16 2 = 548 256 = 2 73 \begin{aligned} a_n&=\sqrt{{\left|\vec{a}\right|}^2-{16}^2}\\&=\sqrt{548-256}\\&\huge\color{#3D99F6}{=\boxed{2\sqrt{73}}}\end{aligned}

I got the right acceleration and the right magnitude, I just don't understand what you did on a t = a v ^ a_{t} = \vec{a} \cdot \hat{v} .
Where did you take this from? Thank you for your time.

Log in to reply

v ^ \hat{v} is unit vector along velocity vector v \vec{v} .

Rohit Ner - 5 years ago

Log in to reply

But I thought the question would be answered after plugging in 2 for the found value of a \vec{a} .
Can you please explain to me what you did after that?
Obs: I'm sorry for this, but I'm still learning Calculus and Physics, both by myself.

Log in to reply

@A Former Brilliant Member The question asks for acceleration along the normal to the curve which is not same as net acceleration a \vec{a} . So we need to resolve a \vec{a} along the tangent and normal. However, only tangent vector to the curve i.e. v \vec{v} is known. So, we calculate acceleration along tangent by taking projection and then perform vector subtraction from a \vec{a} to get the answer.

Rohit Ner - 5 years ago

Log in to reply

@Rohit Ner Ooh I got it now, thank you so much for this, it helped me a lot!

a = a t + a n \vec{a}={\vec{a}_{t }}+{\vec{a}_{n }}

a n = a t 2 a 2 { a }_{ n }=\sqrt { ||{ a }_{ t }||^{ 2 } -||a||^2}

v = d R d t = ( 3 t 2 4 ) i + ( 2 t + 4 ) k + ( 16 t 9 t 2 ) k \vec { v } =\frac { d\vec { R } }{ dt } =(3t^{ 2 }-4)\vec { i } +(2t+4)\vec { k } +(16t-9t^ 2)\vec{k}

a ( t ) = d v d t = 6 t i + 2 j ( 16 18 t ) k \vec { a } (t)=\frac { d\vec { v } }{ dt } =6t\vec { i } +2\vec { j } -(16-18t)\vec { k }

a ( 2 ) = 12 i + 2 j 20 k \vec { a } (2)=12\vec{i}+2\vec{j}-20\vec{k}

a ( 2 ) = 1 2 2 + 2 2 + ( 20 ) 2 = 2 137 ||\vec { a }(2) ||=\sqrt { 12^2+2^2+(-20)^2 } =\boxed{2\sqrt { 137 }}

v = ( 3 t 2 4 t ) 2 + ( 2 t + 4 ) 2 + ( 16 t 9 t 2 ) 2 ||\vec{v}||=\sqrt { (3t^2-4t)^2+(2t+4)^2+(16t-9t^2)^2 }

a t ( t ) = d v d t = d d t ( ( 3 t 2 4 t ) 2 + ( 2 t + 4 ) 2 + ( 16 t 9 t 2 ) 2 ) = 2 ( 45 t 3 108 t 2 + 59 t + 2 ) 45 t 4 2 72 t 3 + 59 t 2 + 4 t + 8 { { a } }_{ t }(t)=\frac { dv }{ dt } =\frac { d }{ dt } (\sqrt { (3t^{ 2 }-4t)^{ 2 }+(2t+4)^{ 2 }+(16t-9t^{ 2 })^{ 2 } } )=\frac { 2(45{ t }^{ 3 }-108{ t }^{ 2 }+59t+2) }{ \sqrt { \frac { 45{ t }^{ 4 } }{ 2 } -72{ t }^{ 3 }+59{ t }^{ 2 }+4t+8 } }

a t ( 2 ) = 16 { { a } }_{ t }(2)=\boxed{16}

a n = ( 2 137 ) 2 1 6 2 = 2 73 \therefore||{ a }_{ n }||=\sqrt { { (2\sqrt { 137 } ) }^{ 2 }-16^{ 2 } } = 2\sqrt { 73 }

Nicola Mignoni
Feb 7, 2019

Let's write our curve as R ( t ) = ( t 3 4 t , t 2 + 4 t , 8 t 2 3 t 3 ) \displaystyle \overline{R}(t)=(t^3-4t,t^2+4t,8t^2-3t^3) , so that

R ( t ) = ( 3 t 2 4 , 2 t + 4 , 16 t 9 t 2 ) R ( t = 2 ) = ( 8 , 8 , 4 ) R ( t ) = ( 6 t , 2 , 16 18 t ) R ( t = 2 ) = ( 12 , 2 , 20 ) \displaystyle \overline{R}'(t)=(3t^2-4,2t+4,16t-9t^2) \Longrightarrow \overline{R}'(t=2)=(8,8,-4) \\ \overline{R}''(t)=(6t,2,16-18t) \Longrightarrow \overline{R}'(t=2)=(12,2,-20)

The centripetal acceleration a n ( t ) \overline{a}_n(t) is defined as

a n ( t ) = R ( t ) 2 r \displaystyle ||\overline{a}_n(t)||=\frac{||\overline{R}'(t)||^2}{r}

where r r is the curvature radius and κ = 1 r \displaystyle \kappa=\frac{1}{r} is the curvature. Since

κ = R ( t ) × R ( t ) R ( t ) 3 \displaystyle \kappa=\frac{||\overline{R}'(t) \times \overline{R}''(t)||}{||\overline{R}'(t)||^3}

then

a n ( t ) = R ( t ) 2 κ = R ( t ) × R ( t ) R ( t ) t = 2 = det ( ( 8 , 8 , 4 ) , ( 12 , 2 , 20 ) ) 12 = 24 73 12 = 2 73 \displaystyle ||\overline{a}_n(t)||=||\overline{R}'(t)||^2\kappa=\frac{||\overline{R}'(t) \times \overline{R}''(t)||}{||\overline{R}'(t)||} \Bigg|_{t=2}=\frac{||\det{((8,8,-4),(12,2,-20))}||}{12}=\frac{24 \sqrt{73}}{12}=\boxed{2\sqrt{73}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...