Power of 1

Algebra Level 3

Find the infimum value of

a 3 ( a b ) ( a c ) + b 3 ( b a ) ( b c ) + c 3 ( c a ) ( c b ) \large \dfrac{a^3}{(a-b)(a-c)} + \dfrac{b^3}{(b-a)(b-c)} + \dfrac{c^3}{(c-a)(c-b)}

If a b c = 1 abc = 1 and a a , b b and c c are positive real numbers.


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Viki Zeta
Oct 18, 2016

a 3 ( a b ) ( a c ) + b 3 ( b a ) ( b c ) + c 3 ( c a ) ( c b ) = a 3 ( a b ) ( a c ) b 3 ( a b ) ( b c ) + c 3 ( a c ) ( b c ) = a 3 ( b c ) b 3 ( a c ) + c 3 ( a b ) ( a b ) ( a c ) ( b c ) = a 3 b a 3 c b 3 a + b 3 c + c 3 a c 3 b ( a b ) ( a c ) ( b c ) = a 3 b b 3 a a 3 c + b 3 c + c 3 a c 3 b ) ( a b ) ( a c ) ( b c ) = a b ( a 2 b 2 ) c ( a 3 b 3 ) + c 3 ( a b ) ( a b ) ( a c ) ( b c ) = a b ( a + b ) ( a b ) c ( a b ) ( a 2 + a b + b 2 ) + c 3 ( a b ) ( a b ) ( a c ) ( b c ) = ( a b ) a b ( a + b ) c ( a 2 + a b + b 2 ) + c 3 ( a b ) ( a c ) ( b c ) = a 2 b + b 2 a a 2 c a b c b 2 c + c 3 ( a c ) ( b c ) = a 2 b a 2 c b 2 c + c 3 + b 2 a a b c ( a c ) ( b c ) = a 2 ( b c ) c ( b 2 c 2 ) + a b ( b c ) ( a c ) ( b c ) = a 2 ( b c ) c ( b + c ) ( b c ) + a b ( b c ) ( a c ) ( b c ) = a 2 c ( b + c ) + a b ( a c ) = a 2 b c c 2 + a b ( a c ) = a 2 c 2 b c + a b ( a c ) = ( a + c ) ( a c ) + b ( a c ) ( a c ) = a + b + c a 3 ( a b ) ( a c ) + b 3 ( b a ) ( b c ) + c 3 ( c a ) ( c b ) = a + b + c Using AM-GM inequality, and noting a, b, c are distinct a + b + c 3 > a b c 3 a b c = 1 a + b + c 3 > 1 a + b + c > 3 a 3 ( a b ) ( a c ) + b 3 ( b a ) ( b c ) + c 3 ( c a ) ( c b ) = a + b + c > 3 \dfrac{a^3}{(a-b)(a-c)} + \dfrac{b^3}{(b-a)(b-c)} + \dfrac{c^3}{(c-a)(c-b)}\\ = \dfrac{a^3}{(a-b)(a-c)} - \dfrac{b^3}{(a-b)(b-c)} + \dfrac{c^3}{(a-c)(b-c)} \\ = \dfrac{a^3(b-c) - b^3(a-c) + c^3(a-b)}{(a-b)(a-c)(b-c)} \\ = \dfrac{a^3b - a^3c - b^3a + b^3c + c^3a - c^3b}{(a-b)(a-c)(b-c)} \\ = \dfrac{a^3b - b^3a - a^3c + b^3c+c^3a - c^3b)}{(a-b)(a-c)(b-c)}\\ = \dfrac{ab(a^2 - b^2) -c(a^3 - b^3) + c^3(a-b)}{(a-b)(a-c)(b-c)} \\ = \dfrac{ab(a+b)(a-b) - c (a-b)(a^2 + ab +b^2) + c^3(a-b)}{(a-b)(a-c)(b-c)} \\ = (a-b)\dfrac{ab(a+b) - c(a^2 + ab + b^2) + c^3}{(a-b)(a-c)(b-c)} \\ = \dfrac{a^2b + b^2a - a^2c - abc - b^2c + c^3}{(a-c)(b-c)} \\ = \dfrac{a^2b - a^2c - b^2c + c^3 + b^2a - abc}{(a-c)(b-c)}\\ \\ = \dfrac{a^2(b-c) -c(b^2 - c^2) + ab(b-c)}{(a-c)(b-c)}\\ = \dfrac{a^2(b-c) - c(b+c)(b-c) + ab(b-c)}{(a-c)(b-c)}\\ = \dfrac{a^2 - c(b+c) + ab}{(a-c)} \\ = \dfrac{a^2 - bc - c^2 + ab}{(a-c)} \\ = \dfrac{a^2 - c^2 - bc + ab}{(a-c)} \\ = \dfrac{(a+c)(a-c) + b(a-c)}{(a-c)} \\ = a+b+c \\ \boxed{\therefore \dfrac{a^3}{(a-b)(a-c)} + \dfrac{b^3}{(b-a)(b-c)} + \dfrac{c^3}{(c-a)(c-b)} = a+b+c} \\ \text{Using AM-GM inequality, and noting a, b, c are distinct} \\ \dfrac{a+b+c}{3} > \sqrt[3]{abc} \\ abc = 1 \\ \implies \dfrac{a+b+c}{3} > 1 \\ \implies a+b+c > 3 \\ \boxed{\therefore \dfrac{a^3}{(a-b)(a-c)} + \dfrac{b^3}{(b-a)(b-c)} + \dfrac{c^3}{(c-a)(c-b)} = a+b+c > 3}

@Vicky Vignesh You have not shown when the equality occurs.(Does it?)

milind prabhu - 4 years, 8 months ago

Log in to reply

Look at last 8 steps.

Viki Zeta - 4 years, 8 months ago

In the last step a + b + c 3 a+b+c \ge 3 so minimum value of a + b + c = 3 a+b+c = 3

Viki Zeta - 4 years, 8 months ago

Log in to reply

And when does that happen?

milind prabhu - 4 years, 8 months ago

Log in to reply

@Milind Prabhu It happens when a + b + c = 3 a+b+c=3 .

Viki Zeta - 4 years, 8 months ago

Log in to reply

@Viki Zeta Note that any three positive numbers that sum up to three don't necessarily also have a product of 1. To show that the minimum actually occurs it is necessary to give three numbers which satisfy the conditions that they are required to satisfy.

milind prabhu - 4 years, 8 months ago

Log in to reply

@Milind Prabhu Who said the product is 3 3 and where? It's clearly given that the product is 1 1

Viki Zeta - 4 years, 8 months ago

Log in to reply

@Viki Zeta Sorry I meant product equal to 1 1 .

milind prabhu - 4 years, 8 months ago

@Milind Prabhu You must take numbers such that sum is greater than or equal to 3 and product is 1. You must look at conditions given in the question than assuming one such.

Viki Zeta - 4 years, 8 months ago

Hey you there?

Md Zuhair - 4 years, 7 months ago

Log in to reply

@Vicky Vignesh

Md Zuhair - 4 years, 7 months ago

Log in to reply

Yes...................

Viki Zeta - 4 years, 7 months ago

Log in to reply

@Viki Zeta hey are you now there?

Md Zuhair - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...