Power of sine!

Calculus Level 5

I ( n ) = 0 π 2 sin 2 n x d x X = r = 1 I ( r ) ( 2 r r ) I(n)= \int _{ 0 }^{ \frac { \pi }{ 2 } }{ \sin ^{ 2n }{ x } } \ dx \qquad \qquad X=\sum _{ r=1 }^{ \infty }{ \frac { I(r) }{ { \left( \begin{matrix} 2r \\r \end{matrix} \right) } } }

Given the above, find 10 4 X \left\lfloor { 10 }^{ 4 }X \right\rfloor

Notation:

  • ( n m ) = n ! n ! ( n m ) ! \displaystyle \binom{n}{m} = \frac{n!}{n! (n-m)!} denotes the binomial coefficient .
  • \lfloor \cdot \rfloor denotes the floor function .
This is part of my set Powers of the ordinary .


The answer is 5235.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Using reduction formula, we get: I ( n ) = 2 n 1 2 n I ( n 1 ) , I ( 0 ) = π 2 I ( n ) = ( 2 n 1 ) ( 2 n 3 ) ( 2 n 5 ) . . . . ( 1 ) ( 2 n ) ( 2 n 2 ) ( 2 n 4 ) . . . ( 2 ) × π 2 I ( n ) = ( 2 n n ) × π 2 × 2 2 n I ( n ) ( 2 n n ) = π 2 × 2 2 n r = 1 I ( r ) ( 2 r r ) = π 2 ( 1 4 + 1 16 + 1 64 + . . . . ) = π 6 = X 10 4 X = 5235 I(n)=\frac { 2n-1 }{ 2n } I(n-1)\quad ,\quad I(0)=\quad \frac { \pi }{ 2 } \\ \\ \Rightarrow I(n)\quad =\frac { (2n-1)(2n-3)(2n-5)....(1) }{ (2n)(2n-2)(2n-4)...(2) } \times \frac { \pi }{ 2 } \\ \\ \Rightarrow I(n)\quad =\left( \begin{matrix} 2n \\ n \end{matrix} \right) \times \frac { \pi }{ 2 } \times { 2 }^{ -2n }\quad \\ \Rightarrow \frac { I(n) }{ \left( \begin{matrix} 2n \\ n \end{matrix} \right) } =\quad \frac { \pi }{ 2 } \times { 2 }^{ -2n }\\ \Rightarrow \sum _{ r=1 }^{ \infty }{ \frac { I(r) }{ { \left( \begin{matrix} 2r \\ r \end{matrix} \right) } } } =\frac { \pi }{ 2 } (\frac { 1 }{ 4 } +\frac { 1 }{ 16 } +\frac { 1 }{ 64 } +....)=\frac { \pi }{ 6 } =X\\ \Rightarrow \left\lfloor { 10 }^{ 4 }X \right\rfloor =\boxed { 5235 }

Did exactly the same

Rohit Shah - 6 years, 3 months ago

Oh! That is something new to me! Can anyone explain me about this?

I rather did using Beta function!

Kartik Sharma - 6 years, 3 months ago

Log in to reply

I would like to add another hint , if i may :

0 π 2 s i n m x c o s n x d x = Γ ( m + 1 2 ) Γ ( n + 1 2 ) 2 Γ ( m + n + 2 2 ) \int_{0}^{\frac{\pi}{2}} sin^{m} x \cdot cos^{n} x dx \\= \dfrac{\Gamma{ ( \dfrac{m+1}{2} ) }\cdot \Gamma{ ( \dfrac{n+1}{2} ) }}{2\cdot \Gamma{ ( \dfrac{m+n+2}{2} ) }}

Did anyone consider this approach , by substituting m 2 n , n 0 m\rightarrow 2n , n\rightarrow 0 in the formula provided above ?

A Former Brilliant Member - 6 years, 3 months ago

Log in to reply

Yeah, my friend used this method to solve it.

Raghav Vaidyanathan - 6 years, 3 months ago

Log in to reply

@Raghav Vaidyanathan Yes , it is a nice method .

Best of Luck Raghav for JEE

A Former Brilliant Member - 6 years, 3 months ago

Reduction formula is just recurrence using IBP. Just google Wallis reduction formula

Rohit Shah - 6 years, 3 months ago

Log in to reply

Oh k. Yes it is Wallis reduction formula. I know about it a little.

Kartik Sharma - 6 years, 3 months ago

Actually you know what , using Walli's Reduction formulae is the best approach for this question since most JEE aspirants know these formulae by heart . I am not saying that using Beta function won't do any good, just that use it for more complex problems .

But it's still your choice of using it or not :)

A Former Brilliant Member - 6 years, 3 months ago

Log in to reply

Oh, is it so? Thanks for that! I will keep that in mind!

Kartik Sharma - 6 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...