Probability of Y=0

X X and Y Y are independent random variables. It is given that P ( X = 0 ) = 0.15 P(X=0)= 0.15 , P ( max ( X , Y ) = 0 ) = 0.23 P(\max(X, Y) = 0) = 0.23 and P ( min ( X , Y ) = 0 ) = 0.19 P (\min(X,Y)=0) = 0.19 . Let p = P ( Y = 0 ) p = P (Y=0) . What is the value of 1000 p \lfloor 1000 p \rfloor ?

Details and assumptions

The function max ( X , Y ) \max(X,Y) denotes the maximum of X X and Y Y . As an explicit example, max ( 1 , 2 ) = 2 \max(1, 2) = 2 .


The answer is 270.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Agnes Casiano
May 20, 2014

By the principle of Inclusion and Exclusion,

P ( Y = 0 ) = P ( m a x ( X , Y ) = 0 ) + P ( m i n ( X , Y ) = 0 ) P ( X = 0 ) P(Y=0) = P(max(X,Y)=0) + P(min(X,Y)=0) - P(X=0) , hence this gives p = 0.23 + 0.19 0.15 = 0.27 p = 0.23 + 0.19 - 0.15 = 0.27 , so the answer is 270 270 .

Do you see how the principle of Inclusion and Exclusion is used here? It greatly simplifies the problem.

Do we need the condition that X X and Y Y are independent?

Calvin Lin Staff - 7 years ago

Log in to reply

I think this problem looks hard and when it is done, we get the simple method. My problem is, how principle of Inclusion and Exlusion can be used in this problem?

Figel Ilham - 6 years, 1 month ago

Log in to reply

See my solution below.

Calvin Lin Staff - 6 years, 1 month ago

Log in to reply

@Calvin Lin I'd understood that.. thanks a lot (Btw, I used the second method of yours to answer this problem)

Figel Ilham - 6 years, 1 month ago
Calvin Lin Staff
May 13, 2014

Solution 1: The principle of Inclusion and Exclusion states that for any 2 events, we have

P ( A ) + P ( B ) = P ( A B ) + P ( A B ) . P(A) + P (B) = P ( A \cap B ) + P ( A \cup B ).

Let A = max ( X , Y ) = 0 A = \max(X, Y) = 0 and B = min ( X , Y ) = 0 B = \min (X, Y) = 0 . Then, we have

P ( max ( X , Y ) = 0 ) + P ( min ( X , Y ) = 0 ) = P ( max ( Y , Y ) = 0 min ( X , Y ) = 0 ) + P ( max ( Y , Y ) = 0 min ( X , Y ) = 0 ) = P ( X = 0 Y = 0 ) + P ( X = 0 Y = 0 ) . P(\max(X,Y)=0) + P(\min(X,Y)=0) \\ = P ( \max(Y,Y) = 0 \cap \min (X, Y) = 0 ) + P ( \max(Y,Y) = 0 \cup \min (X, Y) = 0 ) \\ = P ( X = 0 \cap Y = 0 ) + P ( X = 0 \cup Y = 0).

Now, let A = ( X = 0 ) A = ( X= 0 ) and B = ( Y = 0 ) B = ( Y = 0 ) , and we get that

P ( X = 0 ) + P ( Y = 0 ) = P ( X = 0 Y = 0 ) + P ( X = 0 Y = 0 ) . P ( X = 0 ) + P ( Y = 0 ) = P ( X = 0 \cap Y = 0 ) + P ( X = 0 \cup Y = 0 ).

Thus, we get that

P ( max ( X , Y ) = 0 ) + P ( min ( X , Y ) = 0 ) = P ( X = 0 Y = 0 ) + P ( X = 0 Y = 0 ) = P ( X = 0 ) + P ( Y = 0 ) P(\max(X,Y)=0) + P(\min(X,Y)=0) \\ = P ( X = 0 \cap Y = 0 ) + P ( X = 0 \cup Y = 0) \\ = P ( X = 0 ) + P ( Y = 0 )

Hence, P ( Y = 0 ) = P ( max ( X , Y ) = 0 ) + P ( min ( X , Y ) = 0 ) P ( X = 0 ) P(Y=0) = P(\max(X,Y)=0) + P(\min(X,Y)=0) - P(X=0) , hence this gives p = 0.23 + 0.19 0.15 = 0.270 p = 0.23 + 0.19 - 0.15 = 0.270 , so the answer is 270 270 .

Solution 2: To understand what max ( X , Y ) = 0 \max(X,Y)=0 means, let's consider how this is possible. We clearly need X 0 X \leq 0 and Y 0 Y\leq 0 . Furthermore, if we have X < 0 X < 0 (respectively Y < 0 Y<0 ), then we must have Y = 0 Y=0 (resp. X = 0 X=0 ). Adding on the case that X = 0 , Y = 0 X=0, Y=0 , we get that P ( max ( X , Y ) = 0 ) = P ( X = 0 , Y < 0 ) + P ( X < 0 , Y = 0 ) + P ( X = 0 , Y = 0 ) P( \max (X, Y) = 0 ) = P( X =0, Y < 0) + P(X < 0, Y=0) + P(X=0, Y=0) . Applying the independence of the random variables, we get P ( max ( X , Y ) = 0 ) = P ( X = 0 ) P ( Y < 0 ) + P ( X < 0 ) P ( Y = 0 ) + P ( X = 0 ) P ( Y = 0 ) P(\max (X, Y) = 0) = P(X=0) \cdot P(Y<0) + P(X<0) \cdot P(Y=0) + P(X=0) \cdot P(Y=0) .

Similarly, min ( X , Y ) = 0 \min(X,Y)=0 breaks up into the cases X > 0 , Y = 0 X>0, Y=0 and X = 0 , Y > 0 X=0, Y>0 and X = 0 , Y = 0 X=0, Y=0 . Hence, we get that P ( min ( X , Y ) = 0 ) = P ( X = 0 ) P ( Y > 0 ) + P ( X > 0 ) P ( Y = 0 ) + P ( X = 0 ) P ( Y = 0 ) P (\min(X,Y)=0) = P(X=0) \cdot P(Y>0) + P(X>0) \cdot P(Y=0) + P(X=0) \cdot P(Y=0) .

Adding up these two equations, we get that

P ( max ( X , Y ) = 0 ) = P ( X = 0 ) [ P ( Y < 0 ) + P ( Y > 0 ) ] + P ( Y = 0 ) [ P ( X < 0 ) + P ( X > 0 ) ] + P ( min ( X , Y ) = 0 ) ) + 2 P ( X = 0 ) P ( Y = 0 ) = P ( X = 0 ) [ 1 P ( Y = 0 ) ] + P ( Y = 0 ) [ 1 P ( X = 0 ) ] + 2 P ( X = 0 ) P ( Y = 0 ) = P ( X = 0 ) + P ( Y = 0 ) \begin{aligned} && P(\max(X,Y)=0) & = P(X=0) \cdot [ P(Y<0) + P(Y>0) ] + P(Y=0)[ P(X<0)+P(X>0)] \\ &+ & P(\min (X,Y)=0)) & \quad + 2 P(X=0)\cdot P(Y=0)\\ && & = P(X=0) \cdot [1-P(Y=0)] + P(Y=0) \cdot [1-P(X=0)] + 2 P(X=0) \cdot P(Y=0) \\ && & = P(X=0) + P(Y=0) \\ \end{aligned} where the identities P ( X < 0 ) + P ( X = 0 ) + P ( X > 0 ) = 1 P(X<0)+P(X=0) + P(X>0)=1 and P ( Y < 0 ) + P ( Y = 0 ) + P ( Y > 0 ) = 1 P(Y<0)+P(Y=0)+P(Y>0)=1 are used in the second line. Thus, 0.23 + 0.19 = 0.15 + P ( Y = 0 ) 0.23 + 0.19 = 0.15 + P(Y=0) , so 1000 P ( Y = 0 ) = 270 \lfloor 1000 P(Y=0) \rfloor= 270 .

Work on each case of X,Y=0, negative or positive number.

Case 1: P(X=0, Y=0) = 0.15 \times p

Case 2: P(X=pos., Y=0) = \­(P(X=pos.) \times p\­)

Case 3: P(X=neg., Y=0) = \­(P(X=neg.) \times p\­)

Case 4: P(X=0, Y=pos.) = \­(0.15 \times P(Y=pos.)\­)

Case 5: P(X=0, Y=neg.) = \­(0.15 \times P(Y=neg.)\­)

Note that Cases 1, 3, 5 satisfy P(max(X,Y)=0) and Cases 1, 2, 4 satisfy P(min(X,Y)=0).

Solving linear equation:

\­(0.15p + P(X=neg.)p + 0.15P(Y=neg.)\­) = 0.23

\­(0.15p + P(X=pos.)p + 0.15P(Y=pos.)\­) = 0.19

Simplifying,

\­(0.15(P(Y=neg.) + P(Y=pos.) + 2p) + p(P(X=neg.) + P(X=pos.))\­) = 0.42

Further, \­(P(N=neg.) + P(N=pos.) = P(1-N), so:

\­(0.15(P(1-p) + 2p) + p(1-P(X))\­) = 0.42

\­(0.15 + 0.15p + p - 0.15p\­) = 0.42

\­(0.15 + p\­) = 0.42

p = 0.27

1000p = 270

p= P(Y=0)

p= [P(max(X,Y)=0) + P(min(X,Y)=0)] - P(X=0)

p = (0.23 + 0.19) - 0.15

p = 0.27

1000p = 270

Weng Qi Ong
May 20, 2014

p=0.19+0.23-0.15=0.27 1000p=0.27*1000+=270

The idea behind this solution is to think of each of the events ( X = m i n ( X , Y ) ) (X=min(X,Y)) and ( Y = m a x ( X , Y ) ) (Y=max(X,Y)) as contrary to the event ( X = m a x ( X , Y ) ) (X=max(X,Y)) . If events A A and B B are contrary, then P ( A ) = 1 P ( B ) P(A)=1-P(B) . It basically means that if one of them happens, the other will not. And if one doesn't happen, the other will.

For easier redaction, I will state the following: ( X = m a x ( X , Y ) ) = ( X m a x ) (X=max(X,Y))=(Xmax) , ( X = m i n ( X , Y ) ) = ( X m i n ) (X=min(X,Y))=(Xmin) , ( Y = m a x ( X , Y ) ) = ( Y m a x ) (Y=max(X,Y))=(Ymax) , ( Y = m i n ( X , Y ) ) = ( Y m i n ) (Y=min(X,Y))=(Ymin) .

Firstly, ( m a x ( X , Y ) = 0 ) (max(X,Y)=0) is equivalent to ( X X being at the same time m a x ( X , Y ) max(X,Y) and equal to zero, or Y Y being at the same time m a x ( X , Y ) max(X,Y) and equal to zero).

P ( m a x ( X , Y ) = 0 ) = 0.23 P(max(X,Y)=0)=0.23 \Rightarrow P ( X m a x ) × P ( X = 0 ) + P ( Y m a x ) × P ( Y = 0 ) = 0.23 P(Xmax) \times P(X=0)+P(Ymax) \times P(Y=0)=0.23 \Rightarrow P ( X m a x ) × 0.15 + ( 1 P ( X m a x ) ) × P ( Y = 0 ) = 0.23 P(Xmax) \times 0.15 + (1-P(Xmax)) \times P(Y=0)=0.23 (1).

Secondly, ( m i n ( X , Y ) = 0 ) (min(X,Y)=0) is equivalent to ( X X being at the same time m i n ( X , Y ) min(X,Y) and equal to zero, or Y Y being at the same time m i n ( X , Y ) min(X,Y) and equal to zero).

P ( m i n ( X , Y ) = 0 ) = 0.19 P(min(X,Y)=0)=0.19 \Rightarrow P ( X m i n ) × P ( X = 0 ) + P ( Y m i n ) × P ( Y = 0 ) = 0.19 P(Xmin) \times P(X=0) + P(Ymin) \times P(Y=0)=0.19 \Rightarrow ( 1 P ( X m a x ) ) × 0.15 + P ( X m a x ) × P ( Y = 0 ) = 0.19 (1-P(Xmax)) \times 0.15 + P(Xmax) \times P(Y=0)=0.19 \Rightarrow 0.15 0.15 × P ( X m a x ) + P ( X m a x ) × P ( Y = 0 ) = 0.19 0.15 - 0.15 \times P(Xmax) + P(Xmax) \times P(Y=0)=0.19 (2).

( 1 ) + ( 2 ) (1)+(2) \Rightarrow P ( X m a x ) × 0.15 + ( 1 P ( X m a x ) ) × P ( Y = 0 ) + 0.15 P(Xmax) \times 0.15 + (1-P(Xmax)) \times P(Y=0) + 0.15 - 0.15 × P ( X m a x ) + P ( X m a x ) × P ( Y = 0 ) = 0.23 + 0.19 -0.15 \times P(Xmax) + P(Xmax) \times P(Y=0)=0.23+0.19 \Rightarrow P ( X m a x ) × 0.15 0.15 × P ( X m a x ) + P ( Y = 0 ) × ( 1 P ( X m a x ) + P(Xmax) \times 0.15 - 0.15 \times P(Xmax) + P(Y=0) \times (1-P(Xmax) + + P ( X m a x ) ) + 0.15 = 0.42 +P(Xmax)) + 0.15 = 0.42 \Rightarrow 0 + P ( Y = 0 ) × 1 = 0.42 0.15 0 + P(Y=0) \times 1 = 0.42 - 0.15 \Rightarrow P ( Y = 0 ) = 0.27 P(Y=0) = 0.27 \Rightarrow p = 0.27 p=0.27 \Rightarrow 1000 × p = 270 1000 \times p = 270 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...