Problem 1

Algebra Level 3

Find the product of irrational solutions of the equation

x 2 + x 2 + 11 + x 2 x 2 + 11 = 4 \sqrt { { x }^{ 2 }+\sqrt { { x }^{ 2 }+11 } } +\sqrt { { x }^{ 2 }-\sqrt { { x }^{ 2 }+11 } } =4


The answer is -5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Deepanshu Gupta
Mar 7, 2015

Let A = x 2 + 11 A=\sqrt { { x }^{ 2 }+11 }

Given : x 2 + A + x 2 A = 4 \sqrt { { x }^{ 2 }+A } +\sqrt { { x }^{ 2 }-A } =4

Square both sides ,

2 x 2 + 2 x 4 A 2 = 16 ( 8 x 2 ) 2 = x 4 A 2 A 2 = x 4 ( 8 x 2 ) 2 x 2 + 11 = ( 8 ) ( 2 x 2 8 ) 15 x 2 = 75 x = ± 5 \displaystyle{2{ x }^{ 2 }+2\sqrt { { x }^{ 4 }-{ A }^{ 2 } } =16\\ { (8-{ x }^{ 2 }) }^{ 2 }={ x }^{ 4 }-{ A }^{ 2 }\\ { A }^{ 2 }={ x }^{ 4 }-{ (8-{ x }^{ 2 }) }^{ 2 }\\ { x }^{ 2 }+11=(8)(2{ x }^{ 2 }-8)\\ 15{ x }^{ 2 }=75\\ \boxed { x=\pm \sqrt { 5 } } }

Nice solution, upvoted

Utkarsh Bansal - 6 years, 3 months ago
Sakanksha Deo
Mar 8, 2015

So we have,

x 2 + x 2 + 11 + x 2 x 2 + 11 = 4 \sqrt{ x^{2} + \sqrt{ x^{2} + 11 }} + \sqrt{ x^{2} - \sqrt{ x^{2} + 11 }} = 4

On squaring both sides,we are left with,

2 x 2 + 2 x 4 x 2 11 = 16 2x^{2} + 2\sqrt{ x^{4} - x^{2} - 11 } = 16

x 2 + x 4 x 2 11 = 8 x^{2} + \sqrt{ x^{4} - x^{2} - 11 } = 8

8 x 2 = x 4 x 2 11 8 - x^{2} = \sqrt{ x^{4} - x^{2} - 11 }

Again squaring both sides.we get,

64 + x 4 16 x 2 = x 4 x 2 11 64 + x^{4} - 16x^{2} = x^{4} - x^{2} - 11

15 x 2 = 75 15x^{2} = 75

x = + 5 o r 5 x = +\sqrt{5} or - \sqrt{5}

Therefore,

Product of roots = 5 = \boxed{ -5 }

Nice solution, upvoted

Utkarsh Bansal - 6 years, 3 months ago
Kapil Sethi
Mar 29, 2015

Let A = x 2 + x 2 + 11 A=\sqrt{x^2+\sqrt{x^2+11}} and

B = x 2 x 2 + 11 B=\sqrt{x^2-\sqrt{x^2+11}}

Given A + B = 4 A+B=4 .............. 1 s t \boxed{1^{st}}

Then clearly A 2 B 2 = ( A + B ) ( A B ) = 2 x 2 + 11 A^2-B^2=(A+B)(A-B)=2\sqrt{x^2+11}

\Rightarrow A B = x 2 + 11 2 A-B=\dfrac{\sqrt{x^2+11}}{2} .............. 2 n d \boxed{2^{nd}}

\Rightarrow Adding (or one can go for subtracting too ) 1 s t 1^{st} and 2 n d 2^{nd} equation we get

2 A = 8 + x 2 + 11 2 2A=\dfrac{8+\sqrt{x^2+11}}{2}

\Rightarrow 4 A = 8 + x 2 + 11 4A=8+\sqrt{x^2+11}

Squaring L . H . S L.H.S and R . H . S R.H.S we get,

16 A 2 = 64 + ( x 2 + 11 ) + 16 x 2 + 11 16A^2=64+(x^2+11)+16\sqrt{x^2+11}

Using A = x 2 + x 2 + 11 A=\sqrt{x^2+\sqrt{x^2+11}} we get,

16 ( x 2 + x 2 + 11 ) = 64 + ( x 2 + 11 ) + 16 x 2 + 11 16(x^2+\sqrt{x^2+11})=64+(x^2+11)+16\sqrt{x^2+11}

\Rightarrow 16 x 2 = 64 + x 2 + 11 16x^2=64+x^2+11

\Rightarrow 15 x 2 = 75 15x^2=75

\Rightarrow x = 5 \boxed{x=\sqrt{5}} or x = 5 \boxed{x=-\sqrt{5}}

Since both values of x x are irrational therefore required a n s w e r answer is 5 \boxed{-5} .

Thanks for solution

Utkarsh Bansal - 6 years, 2 months ago
Utkarsh Bansal
Mar 3, 2015

x 2 + x 2 + 11 + x 2 x 2 + 11 = 4 . . . . . . . . ( 1 ) P u t x 2 + 11 = t , s o t h a t t h e e q u a t i o n b e c o m e s t 2 + t 11 + t 2 t 11 = 4 . . . . . . ( 2 ) W e a l s o h a v e a n i d e n t i t y ( t 2 + t 11 ) ( t 2 t 11 ) = 2 t . . . . . . . . . ( 3 ) D i v i d i n g ( 2 ) b y ( 3 ) t 2 + t 11 t 2 t 11 = t 2 . . . . . . . ( 4 ) A d d i n g ( 2 ) a n d ( 4 ) 2 ( t 2 + t 11 ) = 4 + t 2 t 2 + t 11 = 4 + t + t 2 16 t = 4 x = ± 5 \sqrt { { x }^{ 2 }+\sqrt { { x }^{ 2 }+11 } } +\sqrt { { x }^{ 2 }-\sqrt { { x }^{ 2 }+11 } } =4\quad ........(1)\\ Put\quad \sqrt { { x }^{ 2 }+11 } =t\quad ,so\quad that\quad the\quad equation\quad becomes\\ \sqrt { { t }^{ 2 }+t-11 } +\sqrt { { t }^{ 2 }-t-11 } =4\quad ......(2)\\ We\quad also\quad have\quad an\quad identity\quad \\ ({ t }^{ 2 }+t-11)-({ t }^{ 2 }-t-11)=2t\quad .........(3)\\ Dividing\quad (2)\quad by\quad (3)\\ \sqrt { { t }^{ 2 }+t-11 } -\sqrt { { t }^{ 2 }-t-11 } =\frac { t }{ 2 } \quad .......(4)\\ Adding\quad (2)\quad and\quad (4)\\ 2\left( \sqrt { { t }^{ 2 }+t-11 } \right) =\quad 4+\frac { t }{ 2 } \\ \Rightarrow \quad { t }^{ 2 }+t-11=4+t+\frac { { t }^{ 2 } }{ 16 } \\ \Rightarrow t=4\quad \Rightarrow \quad x=\boxed { \pm \sqrt { 5 } } \\

Where does that 4 in eq.(2) come from?

Anandhu Raj - 6 years, 3 months ago

Log in to reply

sorry I've corrected the question and answer.

Utkarsh Bansal - 6 years, 3 months ago

I dont under stand the solution & from where 4 comes

Aritra Chakraborty - 6 years, 3 months ago

Log in to reply

sorry I've corrected the question and answer.

Utkarsh Bansal - 6 years, 3 months ago

Do you mean to say that ± 5 \pm \sqrt{5} are solutions to above equation.

Kushal Patankar - 6 years, 3 months ago

Log in to reply

sorry I've corrected the question and answer.

Utkarsh Bansal - 6 years, 3 months ago

How did you write equation 2?

Purushottam Abhisheikh - 6 years, 3 months ago

Log in to reply

sorry I've corrected the question and answer.

Utkarsh Bansal - 6 years, 3 months ago

Are you 13 years old or 17 years old ?

Rajdeep Dhingra - 6 years, 3 months ago

Log in to reply

Sir I am only 14 but my facebook age is 17. Can you please suggest a way of correcting it.

Utkarsh Bansal - 6 years, 3 months ago

Log in to reply

First of all I am not 'sir'.You comment on calvin lin message board 3 asking him to do it.By the way Nice question . Do you mind telling me your class .

Rajdeep Dhingra - 6 years, 3 months ago

Log in to reply

@Rajdeep Dhingra Thank you Rajdeep for your suggestion and I study in Class 11

Utkarsh Bansal - 6 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...