Problem 6.

Algebra Level 4

1 1 × 2 × 3 × 4 + 1 2 × 3 × 4 × 5 + 1 3 × 4 × 5 × 6 + + 1 50 × 51 × 52 × 53 = ? \dfrac1{1\times2\times3\times4}+ \dfrac1{2\times3\times4\times5}+ \dfrac1{3\times4\times5\times6} + \ldots + \dfrac1{50\times51\times52\times53} = \ ?

Give your answer to 5 decimal places.


The answer is 0.05555.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let S n = 1 1 ˙ 2 ˙ 3 ˙ 4 + 1 2 ˙ 3 ˙ 4 ˙ 5 + 1 3 ˙ 4 ˙ 5 ˙ 6 + . . . + 1 n ( n + 1 ) ( n + 2 ) ( n + 3 ) = 0 ! 4 ! + 1 ! 5 ! + 2 ! 6 ! + . . . + ( n 1 ) ! ( n + 3 ) ! S_{n} = \dfrac {1}{1\dot{}2\dot{}3\dot{}4} + \dfrac {1}{2\dot{}3\dot{}4\dot{}5} + \dfrac {1}{3\dot{}4\dot{}5\dot{}6} + ... + \dfrac {1}{n(n+1)(n+2)(n+3)} \\ \quad = \dfrac {0!}{4!} + \dfrac {1!}{5!} + \dfrac {2!}{6!} + ... + \dfrac {(n-1)!}{(n+3)!}

We note that:

S 1 = 1 4 ! = 1 24 = 24 6 18 ˙ 24 = 2 ˙ 3 ˙ 4 6 18 ˙ 2 ˙ 3 ˙ 4 S_1 = \dfrac{1}{4!} = \dfrac {1}{24} = \dfrac {24-6}{18\dot{}24} = \dfrac {2\dot{}3\dot{}4-6}{18\dot{}2\dot{}3\dot{}4}

S 2 = 1 4 ! + 1 5 ! = 6 5 ! = 9 ˙ 6 9 ˙ 2 ˙ 3 ˙ 4 ˙ 5 = 60 6 18 ˙ 60 = 3 ˙ 4 ˙ 5 6 18 ˙ 3 ˙ 4 ˙ 5 S_2 = \dfrac {1}{4!} + \dfrac {1}{5!} = \dfrac{6}{5!} = \dfrac {9\dot{}6}{9\dot{}2\dot{}3\dot{}4\dot{}5} = \dfrac {60-6}{18\dot{}60} = \dfrac {3\dot{}4\dot{}5-6}{18\dot{}3\dot{}4\dot{}5}

S 3 = 6 5 ! + 2 ! 6 ! = 38 6 ! = 4 ˙ 5 ˙ 6 6 18 ˙ 4 ˙ 5 ˙ 6 = 114 2160 = 38 6 ! S_3 = \dfrac{6}{5!} + \dfrac{2!}{6!} = \dfrac{38}{6!} = \dfrac {4\dot{}5\dot{}6-6}{18\dot{}4\dot{}5\dot{}6} = \dfrac {114}{2160} = \dfrac {38}{6!}

S 4 = 38 6 ! + 3 ! 7 ! = 272 7 ! = 5 ˙ 6 ˙ 7 6 18 ˙ 5 ˙ 6 ˙ 7 = 204 3780 = 272 7 ! S_4 = \dfrac{38}{6!} + \dfrac{3!}{7!} = \dfrac {272}{7!} = \dfrac {5\dot{}6\dot{}7-6}{18\dot{}5\dot{}6\dot{}7} = \dfrac {204}{3780} = \dfrac {272}{7!}

Therefore,

S n = ( n + 1 ) ( n + 2 ) ( n + 3 ) 6 18 ( n + 1 ) ( n + 2 ) ( n + 3 ) = 1 18 1 3 ( n + 1 ) ( n + 2 ) ( n + 3 ) S_n = \dfrac {(n+1)(n+2)(n+3)-6}{18(n+1)(n+2)(n+3)} = \dfrac {1}{18} - \dfrac {1}{3(n+1)(n+2)(n+3)}

S 50 = 1 18 1 3 ˙ 51 ˙ 52 ˙ 53 = 0.055553184 S_{50} = \dfrac {1}{18} - \dfrac {1}{3\dot{}51\dot{}52\dot{}53} = \boxed{0.055553184}

Nice approach! :)

Vishnu Bhagyanath - 5 years, 11 months ago
Adarsh Kumar
Apr 7, 2015

The expression can be written in this form: n = 1 50 ( 1 n ( n + 1 ) ( n + 2 ) ( n + 3 ) ) = 1 3 n = 1 50 ( ( n + 3 ) ( n ) n ( n + 1 ) ( n + 2 ) ( n + 3 ) ) = 1 3 n = 1 50 ( 1 n ( n + 1 ) ( n + 2 ) 1 ( n + 1 ) ( n + 2 ) ( n + 3 ) ) \sum_{n=1}^{50}\left(\dfrac{1}{n(n+1)(n+2)(n+3)}\right)\\ =\dfrac{1}{3}\sum_{n=1}^{50}\left(\dfrac{(n+3)-(n)}{n(n+1)(n+2)(n+3)}\right)\\ =\dfrac{1}{3}\sum_{n=1}^{50}\left(\dfrac{1}{n(n+1)(n+2)}-\dfrac{1}{(n+1)(n+2)(n+3)}\right) .Now we have converted the expression into a telescoping series,and thus,can easily find the answer.

That is the JEE method. V n V_n

Keshav Tiwari - 6 years, 2 months ago

Log in to reply

Yes!I have heard of that but I don't really know that method.

Adarsh Kumar - 6 years, 2 months ago

Log in to reply

Would you like to share your JEE marks bhaiya?

Adarsh Kumar - 6 years, 2 months ago

Log in to reply

@Adarsh Kumar Not very Good . 185 only Lots of negative marking :/

Keshav Tiwari - 6 years, 2 months ago

Log in to reply

@Keshav Tiwari Well,don't worry,you will do better in Advanced,just be careful while marking your answers and while doing calculations.

Adarsh Kumar - 6 years, 2 months ago

Log in to reply

@Adarsh Kumar ^Thanks ! :)

Keshav Tiwari - 6 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...