Push it to the limit

Calculus Level 4

lim n n 2 ( n 2 + 1 ) ( n 2 + 4 ) ( n 2 + 9 ) ( n 2 + n 2 ) n \large \lim_{n \to\ \infty} \frac{n^2}{\sqrt[n]{(n^2 + 1)(n^2 + 4)(n^2 + 9) \cdots (n^2 + n^2)}}

Find the value of the limit above.

2 e 2 + π 2 \displaystyle \large 2e^{2 + \frac{\pi}{2}} 1 2 e 2 π 2 \displaystyle \large \frac 12 e^{2 - \frac{\pi}{2}} 1 2 e 2 + π 2 \displaystyle \large \frac 12 e^{2 + \frac{\pi}{2}} 2 e 2 π 2 \displaystyle \large 2e^{2 - \frac{\pi}{2}}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Zach Abueg
Apr 11, 2017

First, note that

lim n n 2 ( n 2 + 1 ) ( n 2 + 4 ) ( n 2 + 9 ) ( n 2 + n 2 ) n = lim n n 2 n ( n 2 + 1 ) ( n 2 + 4 ) ( n 2 + 9 ) ( n 2 + n 2 ) n \displaystyle \lim_{n \to\ \infty} \frac{n^2}{\sqrt[n]{(n^2 + 1) \cdot (n^2 + 4) \cdot (n^2 + 9) \cdot \cdot \cdot (n^2 + n^2)}} = \lim_{n \to\ \infty} \sqrt[n]{\frac{n^{2n}}{(n^2 + 1) \cdot (n^2 + 4) \cdot (n^2 + 9) \cdot \cdot \cdot (n^2 + n^2)}}

Let this limit be L L . Splitting up the numerator, we see that

L = lim n i = 1 n n 2 n 2 + i 2 n \displaystyle L = \lim_{n \to\ \infty} \sqrt[n]{\prod_{i = 1}^{n} \frac{n^2}{n^2 + i^2}}

Taking the natural log of both sides,

ln L = lim n 1 n i = 1 n ln ( n 2 n 2 + i 2 ) = lim n 1 n i = 1 n ln ( n 2 + i 2 n 2 ) = 0 1 ln ( x 2 + 1 ) d x \displaystyle \ln L = \lim_{n \to \infty} \frac 1n \sum_{i = 1}^{n} \ \ln \Bigg(\frac{n^2}{n^2 + i^2} \Bigg) = - \lim_{n \to \infty} \frac 1n \sum_{i = 1}^{n} \ \ln \Bigg(\frac{n^2 + i^2}{n^2} \Bigg) = - \int_{0}^{1} \ln (x^2 + 1) dx ,

where in the last step, we used the limit definition of the integral. We evaluate this integral by parts:

Let u = ln ( x 2 + 1 ) u = \ln (x^2 + 1) and d v = 1 dv = 1 , so this integral is equal to

x ln ( x 2 + 1 ) 2 x 2 x 2 + 1 d x = x ln ( x 2 + 1 ) 2 ( 1 1 x 2 + 1 ) d x = x ln ( x 2 + 1 ) 2 x + 2 tan 1 x \displaystyle x \ln(x^2 + 1) - 2 \int \frac {x^2}{x^2 + 1} dx = x \ln (x^2 + 1) - 2 \int (1 - \frac{1}{x^2 + 1}) dx = x \ln (x^2 + 1) - 2x + 2 \tan ^{-1} x

Evaluating this from 0 0 to 1 1 and negating shows that

ln L = 2 π 2 ln 2 \displaystyle \ln L = 2 - \frac{\pi}{2} - \ln 2 ,

so it follows that L = 1 2 e 2 π 2 \displaystyle L = {\large{\boxed{\frac 12 e^{2 - \frac {\pi}{2}}}}}

In line 6 of your answer, would you mind explaining how you got to the intergral?

Khalil Hajbi - 4 years, 1 month ago

Log in to reply

It is known as a Riemann Sum . The limit has been converted into a definite integral.

Arkajyoti Banerjee - 4 years, 1 month ago

Log in to reply

@Arkajyoti Banerjee Thank you very much for giving me the name of the wiki :D

Khalil Hajbi - 4 years, 1 month ago

Log in to reply

@Khalil Hajbi I'm glad that turned out to be helpful.

Arkajyoti Banerjee - 4 years, 1 month ago

Check out the wiki for more information on rewriting a series as a definite integral.

Zach Abueg - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...