Pyramid Investigations 4 – Pyramid Number Identity

Algebra Level 1

In the pattern

1 + 2 + 3 + + ( n 1 ) + n + ( n 1 ) + + 3 + 2 + 1 , 1 + 2 + 3 + \dots + (n-1) + n + (n-1) + \dots + 3 + 2 + 1,

which of the following expressions represents the sum?

This problem is part of the Pyramid Investigations Set .
2 n 2n 4 n 4 n 2 n 2 2 n^2 n 2 n^2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

14 solutions

Prasun Biswas
Mar 29, 2014

We use here the formula 1 + 2 + 3 + . . . . + n = n + ( n 1 ) + . . . . . . + 3 + 2 + 1 = n ( n + 1 ) 2 1+2+3+....+n=n+(n-1)+......+3+2+1=\frac{n(n+1)}{2} .

The given expression is ---->

1 + 2 + 3 + . . . . . . . . + ( n 1 ) + n + ( n 1 ) + . . . . . . + 3 + 2 + 1 1+2+3+........+(n-1)+n+(n-1)+......+3+2+1

= ( 1 + 2 + 3 + . . . . + ( n 1 ) ) + n + ( ( n 1 ) + . . . . + 3 + 2 + 1 ) =(1+2+3+....+(n-1))+n+((n-1)+....+3+2+1)

= ( ( n 1 ) ( n 1 + 1 ) 2 ) + n + ( ( n 1 ) ( n 1 + 1 ) 2 ) =(\frac{(n-1)(n-1+1)}{2})+n+(\frac{(n-1)(n-1+1)}{2})

= ( n 1 ) n 2 + ( n 1 ) n 2 + n =\frac{(n-1)n}{2}+\frac{(n-1)n}{2}+n

= ( n 1 ) n + ( n 1 ) n 2 + n =\frac{(n-1)n+(n-1)n}{2}+n

= 2 ( n 1 ) n 2 + n =\frac{2(n-1)n}{2}+n

= ( n 1 ) n + n = n ( ( n 1 ) + 1 ) = n ( n 1 + 1 ) = n × n = n 2 =(n-1)n+n = n((n-1)+1)=n(n-1+1)=n\times n = \boxed{n^2}

good proof you saves my typing time.

Archies Dubey - 7 years, 2 months ago

1^2 =1, 2^2 =4, 3^2 = 9, 4^2 =16 5^2 = 25 then n^2 must be the answer. :P

Ian Paul Blas - 7 years, 2 months ago

good

Abid Ali - 7 years, 2 months ago

impressive

palwasha rauf - 7 years, 2 months ago

Great!

Rita Suzana - 7 years, 2 months ago

by using A.P. (n/2)(1+n) + (n-1)(n)/2 =(n/2)(2n) = n^2

Praveen Kumar - 7 years, 2 months ago

i liked it

manish bhargao - 7 years, 2 months ago

Well done!

Akshay Jamwal - 7 years, 2 months ago

Nice solution, thanks!

Pethree Asiain - 7 years, 2 months ago

thank u for your solution?

Lauren Joyce Sagarino - 7 years, 2 months ago

Log in to reply

Are you saying or asking ??

Prasun Biswas - 7 years, 2 months ago

Log in to reply

Ha Ha!!

Tanya Gupta - 7 years, 2 months ago

n^2

Arkajit Pal Choudhury - 7 years, 2 months ago

i dont get it.. can anyone teach me how to use this formula?

zufayri zaidi - 7 years, 2 months ago

Log in to reply

How much more elaborately can I explain ?? Which part of the solution is troubling you ?

Prasun Biswas - 7 years, 1 month ago

Log in to reply

want to know how you got that formula??n(n+1)/2

Akom Ternuk - 6 years, 11 months ago

Log in to reply

@Akom Ternuk That is a pretty basic formula and can be proved using induction or by the use of arithmetic progression formulas.

Prasun Biswas - 6 years, 5 months ago

Good. Congrats.

Sadasivam Basavaiya - 7 years, 2 months ago

(Y) good work

Sidra Wagan - 7 years, 1 month ago
Abhishek Agrawal
Mar 31, 2014

always mid term square

1+2+3+4+..........+(n-1)+n+(n-1)+................+4+3+2+1
=[1+2+3+............+n]+[(n-1)+...........+4+3+2+1]
=[n(n+1)/2]+[(n-1)(n-1+1)/2]
= [n(n+1)/2]+[n(n-1)/2]
= (n/2)(n+1+n-1)=(n/2)(2n) = n^2



Its simplyer i think

Dhan Raj
Apr 14, 2014

n(n+1)/2+(n-1)n/2=n^2

Oliver Daniel
Apr 4, 2014

The solution was available in a previous problem. I just remembered. Thank to whoever posted it.

Jagan Mohan Rao
Apr 3, 2014

A simpler way to explain is to write the series as follows:: Consider n=9., then you can rearrange the series as : 1+8+ 2+7+ 3+6+ 4+5+ 5+4+ 6+3+ 7+2+ 8+1+ 9 =9*9=9^2=n^. Here Answer is 81

Clay Young
Apr 3, 2014

This is getting stupid...n^n.

Aqib Yousaf
Apr 3, 2014

just we take square the numbers in squenvize and get ans in this way

Hemant Udakeri
Apr 3, 2014

square of n

Shailesh Patel
Apr 2, 2014

1+2+3+......+(n-1)+n+(n-1)+......+3+2+1 =2(1)+2(2)+2(3)+.......+2(n-1)+n=n^2

Krishna Garg
Apr 2, 2014

Expression is from 1 to n and then back to 1 ,so sum will be nXn = n square

K.K.GARG,India

Read Investmtu
Mar 30, 2014

hint:use n=3

Bhavesh Bhagde
Mar 29, 2014

n^2=sum of all total sphere

nice................

Yamini Lathareddy - 7 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...