Quadruplets Under One Roof

Algebra Level 3

2 k = 1 1 k ( k + 1 ) ( k + 2 ) ( k + 3 ) = ? \left \lfloor 2 \sum_{k=1}^{\infty} \cfrac{1}{\sqrt{k(k+1)(k+2)(k+3)}}\right \rfloor = ?

Notation: \lfloor \cdot \rfloor denotes the floor function .

You can try more of my fundamental problems here .

The series just doesn't converge. 2 0 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Brian Moehring
Jul 7, 2018

Note that for all k 1 k \geq 1 ( k + 1 ) ( k + 2 ) k ( k + 3 ) = 2 > 0 ( ( k + 1 ) ( k + 2 ) ) 2 > k ( k + 1 ) ( k + 2 ) ( k + 3 ) 1 ( k + 1 ) ( k + 2 ) < 1 k ( k + 1 ) ( k + 2 ) ( k + 3 ) (k+1)(k+2) - k(k+3) = 2 > 0 \implies \left((k+1)(k+2)\right)^2 > k(k+1)(k+2)(k+3) \implies \frac{1}{(k+1)(k+2)} < \frac{1}{\sqrt{k(k+1)(k+2)(k+3)}} ( k + 2 ) ( k + 3 ) k ( k + 1 ) > 5 k + 6 > 0 k ( k + 1 ) ( k + 2 ) ( k + 3 ) > ( k ( k + 1 ) ) 2 1 k ( k + 1 ) ( k + 2 ) ( k + 3 ) < 1 k ( k + 1 ) (k+2)(k+3) - k(k+1) > 5k+6 > 0 \implies k(k+1)(k+2)(k+3) > \left(k(k+1)\right)^2 \implies \frac{1}{\sqrt{k(k+1)(k+2)(k+3)}} < \frac{1}{k(k+1)} In particular, this shows k = 1 1 k ( k + 1 ) 1 2 = k = 1 1 ( k + 1 ) ( k + 2 ) < k = 1 1 k ( k + 1 ) ( k + 2 ) ( k + 3 ) < k = 1 1 k ( k + 1 ) \sum_{k=1}^\infty \frac{1}{k(k+1)} - \frac{1}{2} = \sum_{k=1}^\infty \frac{1}{(k+1)(k+2)} < \sum_{k=1}^\infty \frac{1}{\sqrt{k(k+1)(k+2)(k+3)}} < \sum_{k=1}^\infty \frac{1}{k(k+1)}

Since k = 1 1 k ( k + 1 ) = lim N k = 1 N ( 1 k 1 k + 1 ) = lim N ( 1 1 N + 1 ) = 1 , \sum_{k=1}^\infty \frac{1}{k(k+1)} = \lim_{N\to\infty} \sum_{k=1}^N \left(\frac{1}{k} - \frac{1}{k+1}\right) = \lim_{N\to\infty} \left(1 - \frac{1}{N+1}\right) = 1, the above inequality becomes 1 2 = 1 1 2 < k = 1 1 k ( k + 1 ) ( k + 2 ) ( k + 3 ) < 1 \frac{1}{2} = 1 - \frac{1}{2} < \sum_{k=1}^\infty \frac{1}{\sqrt{k(k+1)(k+2)(k+3)}} < 1 1 < 2 k = 1 1 k ( k + 1 ) ( k + 2 ) ( k + 3 ) < 2 1 < 2\sum_{k=1}^\infty \frac{1}{\sqrt{k(k+1)(k+2)(k+3)}} < 2 and therefore 2 k = 1 1 k ( k + 1 ) ( k + 2 ) ( k + 3 ) = 1 \left\lfloor 2\sum_{k=1}^\infty \frac{1}{\sqrt{k(k+1)(k+2)(k+3)}} \right\rfloor = \boxed{1}

@Brian Moehring well done.

donglin loo - 2 years, 11 months ago

Note that k ( k + 2 ) = k 2 + 2 k < k 2 + 2 k + 1 = ( k + 1 ) 2 k(k+2) = k^2+2k < k^2 +2k + 1 = (k+1)^2 and ( k + 1 ) ( k + 3 ) = k 2 + 4 k + 3 < k 2 + 4 k + 4 = ( k + 2 ) 2 (k+1)(k+3) = k^2 + 4k+3 < k^2+4k+4 = (k+2)^2 . Therefore,

1 ( k + 1 ) ( k + 1 ) ( k + 2 ) ( k + 2 ) < 1 k ( k + 1 ) ( k + 2 ) ( k + 3 ) < 1 k ( k ) ( k + 1 ) ( k + 1 ) k = 1 1 ( k + 1 ) ( k + 2 ) < k = 1 1 k ( k + 1 ) ( k + 2 ) ( k + 3 ) < k = 1 1 k ( k + 1 ) k = 1 ( 1 k + 1 1 k + 2 ) < k = 1 1 k ( k + 1 ) ( k + 2 ) ( k + 3 ) < k = 1 ( 1 k 1 k + 1 ) 1 2 < k = 1 1 k ( k + 1 ) ( k + 2 ) ( k + 3 ) < 1 \begin{aligned} \frac 1{\sqrt{(k+1)(k+1)(k+2)(k+2)}} < & \frac 1{\sqrt{k(k+1)(k+2)(k+3)}} < \frac 1{\sqrt{k(k)(k+1)(k+1)}} \\ \implies \sum_{k=1}^\infty \frac 1{(k+1)(k+2)} < & \sum_{k=1}^\infty \frac 1{\sqrt{k(k+1)(k+2)(k+3)}} < \sum_{k=1}^\infty \frac 1{k(k+1)} \\ \sum_{k=1}^\infty \left(\frac 1{k+1} - \frac 1{k+2}\right) < & \sum_{k=1}^\infty \frac 1{\sqrt{k(k+1)(k+2)(k+3)}} < \sum_{k=1}^\infty \left(\frac 1k - \frac 1{k+1}\right) \\ \frac 12 < & \sum_{k=1}^\infty \frac 1{\sqrt{k(k+1)(k+2)(k+3)}} < 1 \end{aligned}

Therefore, 2 k = 1 1 k ( k + 1 ) ( k + 2 ) ( k + 3 ) = 1 \left \lfloor 2\displaystyle \sum_{k=1}^\infty \frac 1{\sqrt{k(k+1)(k+2)(k+3)}} \right \rfloor = \boxed{1} .

@Chew-Seong Cheong Great job sir. You seem to be pretty expert in Math, especially in Algebra and Calculus. How did you do that? By chance, did you major in Math?

donglin loo - 2 years, 11 months ago

Log in to reply

I just have an interest in them. Very active in Brilliant.org. See this .

Chew-Seong Cheong - 2 years, 11 months ago

Log in to reply

@Chew-Seong Cheong Wow! Impressive, sir! Keep up the good work!

donglin loo - 2 years, 11 months ago

@Chew Seong Cheong Sir, do you happen to know the value of convergence for the series k = 1 1 k ( k + 1 ) ( k + 2 ) ( k + 3 ) \left \lfloor \sum_{k=1}^{\infty} \cfrac{1}{\sqrt{k(k+1)(k+2)(k+3)}}\right \rfloor ?

donglin loo - 2 years, 11 months ago

Log in to reply

I cheated. I use Wolfram Alpha to check. It is free. See this link .

Chew-Seong Cheong - 2 years, 11 months ago

Log in to reply

I see. So, so far it seems like there is no theoretical approach in deriving the value for it. Anyway, your performance in solving this problem is impressive, sir.

donglin loo - 2 years, 11 months ago

Log in to reply

@Donglin Loo You can use numerical solutions using programming. Not all problems can be solved algebraically. I use Excel spreadsheets regularly. It is easy to use. I can easily get an estimate of this problem by summing to 300 terms.

Chew-Seong Cheong - 2 years, 11 months ago

Log in to reply

@Chew-Seong Cheong @Chew-Seong Cheong I see. Thanks for for your suggestion.

donglin loo - 2 years, 11 months ago
Donglin Loo
Jul 7, 2018

Read this first.

1 2 < lim n k = 1 n 1 k ( k + 1 ) ( k + 2 ) ( k + 3 ) < 1 \cfrac{1}{2}<\displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{1}{\sqrt{k(k+1)(k+2)(k+3)}}<1

1 < 2 lim n k = 1 n 1 k ( k + 1 ) ( k + 2 ) ( k + 3 ) < 2 1<2\displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{1}{\sqrt{k(k+1)(k+2)(k+3)}}<2

2 lim n k = 1 n 1 k ( k + 1 ) ( k + 2 ) ( k + 3 ) = 1 \therefore \lfloor2\displaystyle{\lim_{n\to \infty}} \sum_{k=1}^{n} \cfrac{1}{\sqrt{k(k+1)(k+2)(k+3)}}\rfloor=1

Simply, 2 k = 1 1 k ( k + 1 ) ( k + 2 ) ( k + 3 ) = 1 \lfloor 2\displaystyle \sum_{k=1}^{\infty} \cfrac{1}{\sqrt{k(k+1)(k+2)(k+3)}}\rfloor=1

Where do you live in Malaysia? I am in Petaling Jaya.

Chew-Seong Cheong - 2 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...