Quick and cute summer Sangaku #1

Geometry Level pending

The diagram shows a pink circle of radius 1 and a green circle of radius 4. The are tangent to each other and to the same black line. We inscribe a yellow square between the black line and the two circles.


  • Question : The side length of the square can be written as a a + a ( a c b b ) b a b b a b a ( a b c b a a ) b a b \boxed{a^a+\frac{a\left(a\sqrt{c}-b^b\right)^{\frac{b-a}{b}}}{b^{\frac{a}{b}}}-\frac{a}{\left(ab\sqrt{c}-b^{a\cdot a}\right)^{\frac{b-a}{b}}}}
  • Evaluate a + b + c \boxed{a+b+c}


The answer is 188.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

  • We can draw a coordinate system and give the pink circle the equation : x 2 + ( y 1 ) 2 1 = 0 \boxed{x^{2}+(y-1)^{2}-1=0} and the green circle this equation : ( x 4 ) 2 + ( y 4 ) 2 16 = 0 \boxed{(x-4)^{2}+(y-4)^{2}-16=0}
  • There must be a point M ( x ; y ) \boxed{M(x;y)} on the pink circle and a point N ( x ; y ) \boxed{N(x';y)} on the green circle to construct the square.
  • Since point M ( x ; y ) \boxed{M(x;y)} is on the pink circle, we can express x \boxed{x} in terms of y \boxed{y} using the equation x 2 + ( y 1 ) 2 1 = 0 \boxed{x^{2}+(y-1)^{2}-1=0} <=> x = 2 y y 2 \boxed{x=\sqrt{2y-y^{2}}}
  • Since point N ( x ; y ) \boxed{N(x';y)} is on the green circle, we can express x \boxed{x} in terms of y \boxed{y} using the equation ( x 4 ) 2 + ( y 4 ) 2 16 = 0 \boxed{(x-4)^{2}+(y-4)^{2}-16=0} <=> x = 4 8 y y 2 \boxed{x'=4-\sqrt{8y-y^{2}}}
  • In a square, the length and the width are the same, then we need to solve the equation : y = 4 8 y y 2 2 y y 2 \boxed{y=4-\sqrt{8y-y^2}-\sqrt{2y-y^2}} < = > <=> ( y 4 + 8 y y 2 ) 2 = ( 2 y y 2 ) 2 \boxed{\left(y-4+\sqrt{8y-y^2}\right)^2=\left(-\sqrt{2y-y^2}\right)^2} < = > <=> 2 8 y y 2 y 8 8 y y 2 + 16 = 2 y y 2 \boxed{2\sqrt{8y-y^2}y-8\sqrt{8y-y^2}+16=2y-y^2} < = > <=> ( 2 8 y y 2 ( y 4 ) ) 2 = ( 2 y y 2 16 ) 2 \boxed{\left(2\sqrt{8y-y^2}\left(y-4\right)\right)^2=\left(2y-y^2-16\right)^2} < = > <=> 4 y 4 + 64 y 3 320 y 2 + 512 y = 4 y 3 + y 4 + 36 y 2 64 y + 256 \boxed{-4y^4+64y^3-320y^2+512y=-4y^3+y^4+36y^2-64y+256} < = > <=> 5 y 4 + 68 y 3 356 y 2 + 576 y 256 = 0 \boxed{-5y^4+68y^3-356y^2+576y-256=0} < = > <=> ( 5 y 8 ) ( y 3 12 y 2 + 52 y 32 ) = 0 \boxed{-\left(5y-8\right)\left(y^3-12y^2+52y-32\right)=0}
  • The first solution is 8 5 \boxed{\frac {8}{5}} and this is unacceptable. We need to find the solution of the cubic factor.
  • We can use the cubic formula to find the value of y \boxed{y}
  • We get y = ( 24 ( 15616 27 ) 1 2 ) 1 3 + ( 24 + ( 15616 27 ) 1 2 ) 1 3 + 4 \boxed{y=\left(-24-\left(\frac{15616}{27}\right)^{\frac{1}{2}}\right)^{\frac{1}{3}}+\left(-24+\left(\frac{15616}{27}\right)^{\frac{1}{2}}\right)^{\frac{1}{3}}+4} < = > <=> ( 16 61 3 3 24 ) 1 3 + ( 16 61 3 3 24 ) 1 3 + 4 \boxed{\left(-\frac{16\sqrt{61}}{3\sqrt{3}}-24\right)^{\frac{1}{3}}+\left(\frac{16\sqrt{61}}{3\sqrt{3}}-24\right)^{\frac{1}{3}}+4} < = > <=> ( 16 183 9 24 ) 1 3 + ( 16 183 9 24 ) 1 3 + 4 \boxed{\left(-\frac{16\sqrt{183}}{9}-24\right)^{\frac{1}{3}}+\left(\frac{16\sqrt{183}}{9}-24\right)^{\frac{1}{3}}+4}
  • ( 16 183 9 24 ) 1 3 = ( 16 183 216 3 2 ) 1 3 = 2 ( 2 183 27 3 2 ) 1 3 = 2 ( 2 183 27 ) 1 3 3 2 3 \boxed{\left(\frac{16\sqrt{183}}{9}-24\right)^{\frac{1}{3}}=\left(\frac{16\sqrt{183}-216}{3^2}\right)^{\frac{1}{3}}=2\left(\frac{2\sqrt{183}-27}{3^2}\right)^{\frac{1}{3}}=2\frac{\left(2\sqrt{183}-27\right)^{\frac{1}{3}}}{3^{\frac{2}{3}}}}
  • ( 16 183 9 24 ) 1 3 = 2 ( 6 183 81 ) 1 3 \boxed{\left(-\frac{16\sqrt{183}}{9}-24\right)^{\frac{1}{3}}=-\frac{2}{\left(6\sqrt{183}-81\right)^{\frac{1}{3}}}}
  • We find that the side length is equal to : 4 + 2 ( 2 183 27 ) 1 3 3 2 3 2 ( 6 183 81 ) 1 3 \boxed{4+\frac{2\left(2\sqrt{183}-27\right)^{\frac{1}{3}}}{3^{\frac{2}{3}}}-\frac{2}{\left(6\sqrt{183}-81\right)^{\frac{1}{3}}}}
  • a = 2 \boxed{a=2} b = 3 \boxed{b=3} c = 183 \boxed{c=183}
  • a + b + c = 188 \boxed{a+b+c=188}

I am confused as to how exactly did you find the numeric expression for the side length from the equation just before it. Can you elaborate on that ?

Hosam Hajjir - 11 months ago

Log in to reply

I did an editing, i hope you'r not "confused" anymore =)

Valentin Duringer - 11 months ago

Log in to reply

Thank you for explaining that.

Hosam Hajjir - 11 months ago

Log in to reply

@Hosam Hajjir You are welcome

Valentin Duringer - 11 months ago

You mean how to solve the equation or how to get the required form? I'll try to make an edit in 10 hours anyway...

Valentin Duringer - 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...