Raft for children

Two children, each weighing 534 N, 534 \text{ N,} make a log raft by lashing together logs. Each log has a diameter of 0.30 m 0.30 \text{ m} and a length of 1.80 m . 1.80 \text{ m}. How many logs will be needed to keep them afloat in fresh water?

The density of the logs is 800 kg/m 3 800 \text{ kg/m}^3 .
The density of fresh water is 1000 kg/m 3 . 1000 \text{ kg/m}^{3}.


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Parth Lohomi
Feb 15, 2015

The buoyant force exerted by water on the logs must be able to support the weight of the children equal to

2 x 534 = 1068 N 2 x 534 = 1068 N

The buoyant force is given by

F = V g ( ρ w ρ l ) F = V g ( ρw - ρl )

ρw = density of water = 1000 k g / m 3 1000 kg/m^3

ρl = density of log = 800 k g / m 3 800 kg/m^3

V = total volume of the logs = π r 2 h n = π ( 0.15 ) 2 × 1.8 n \pi r^2 h n = \pi (0.15)^2 \times 1.8 n

V = 0.1272 n 0.1272 n , ( where n is the number of logs )

1068 = 0.1272 × n × g ( 1000 800 ) = 0.1272 n × 9.8 × 200 1068 = 0.1272\times n \times g ( 1000 - 800 ) = 0.1272 n \times 9.8 \times 200

n = 4.284

But you can not have logs in fraction so the required number of logs are 4.284 \lfloor{4.284}\rfloor = 5 5

You need 5 \boxed{5} . Logs

You need to mention that the number of logs can not be fraction...... But still good and easy

siddharth bhatt - 6 years, 3 months ago

Log in to reply

OK @siddharth bhatt

Are you really AIR-44?? WOW! !

Parth Lohomi - 6 years, 3 months ago

Log in to reply

In this question, we assumed that the whole log will be submerged in water. But in reality, the entire volume of a log won't be submerged!!

A Former Brilliant Member - 6 years, 3 months ago

Log in to reply

@A Former Brilliant Member Yeah that's an Assumption. .. .

Parth Lohomi - 6 years, 3 months ago
Ritesh Yadav
Jul 4, 2014

W e i g h t o f e a c h c h i l d = 534 N W e i g h t o f 2 c h i l d r e n = 1068 N L e t t h e n o . o f l o g u s e d b e " n " R a d i u s o f l o g i s 0.15 m V o l u m e o f e a c h l o g c a l c u l a t e d u s i n g f o r m u l a π r 2 h = 0.127 m 3 V o l u m e o f " n " l o g s = 0.127 n m 3 W e i g h t o f e a c h l o g c a l c u l a t e d u s i n g f o r m u l a ρ V = 997.5 N W e i g h t o f " n " l o g s = 997.5 n N T o t a l w e i g h t o f t h e s y s t e m ( C h i l d r e n + B o a t ) = ( 1068 + 997.5 n ) N B u o y a n t f o r c e = w e i g h t o f w a t e r d i s p l a c e d = d e n s i t y o f w a t e r × V o l u m e o f w a t e r d i s p l a c e d × g r a v i t a t i o n a l a c c e l e r a t i o n V o l u m e o f w a t e r d i s p l a c e d = V o l u m e o f l o g s ( I N T H E E X T R E M E C O N D I T I O N ) V o l u m e o f " n " l o g s = 0.127 n m 3 W e i g h t o f w a t e r d i s p l a c e d = 1000 × 0.127 n × 9.8 = 1244.6 n N = B u o y a n t f o r c e N o w b a l a n c i n g f o r c e s o n t h e s y s t e m 1244.6 n = 1068 + 997.5 n 247.1 n = 1068 n = 4.4 S i n c e l o g s c a n n o t b e a f r a c t i o n w e h a v e t o u s e 5 l o g s t o m a k e t h e b o a t B e c a u s e t h e d e n s i t y o f l o g i s l e s s t h a n t h e d e n s i t y o f w a t e r s o w e h a v e t o i n c r e a s e i t t o a n i n t e g e r r a t h e r d e c r e a s i n g i t . Weight\quad of\quad each\quad child\quad =\quad 534N\\ Weight\quad of\quad 2\quad children\quad =\quad 1068N\\ Let\quad the\quad no.\quad of\quad log\quad used\quad be\quad "n"\\ Radius\quad of\quad log\quad is\quad 0.15m\\ Volume\quad of\quad each\quad log\quad calculated\quad using\quad formula\quad \pi { r }^{ 2 }h\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad 0.127\quad { m }^{ 3 }\\ Volume\quad of\quad "n"\quad logs\quad =\quad 0.127n\quad { m }^{ 3 }\\ Weight\quad of\quad each\quad log\quad calculated\quad using\quad formula\quad \rho V\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad 997.5\quad N\quad \\ Weight\quad of\quad "n"\quad logs\quad =\quad 997.5n\quad N\\ Total\quad weight\quad of\quad the\quad system\quad (Children\quad +\quad Boat)\quad =\quad (1068\quad +\quad 997.5n)\quad N\\ Buoyant\quad force\quad =\quad weight\quad of\quad water\quad displaced\quad =\quad density\quad of\quad water\quad \times \quad Volume\quad of\quad water\quad displaced\quad \times \quad gravitational\quad acceleration\\ Volume\quad of\quad water\quad displaced\quad =\quad Volume\quad of\quad logs\quad (IN\quad THE\quad EXTREME\quad CONDITION)\\ Volume\quad of\quad "n"\quad logs\quad =0.127n\quad { m }^{ 3 }\\ Weight\quad of\quad water\quad displaced\quad =\quad 1000\quad \times \quad 0.127n\quad \times \quad 9.8\quad =\quad 1244.6n\quad N\quad =\quad Buoyant\quad force\\ Now\quad balancing\quad forces\quad on\quad the\quad system\\ 1244.6n\quad =\quad 1068\quad +\quad 997.5n\\ 247.1n\quad =\quad 1068\\ n\quad =\quad 4.4\\ Since\quad logs\quad cannot\quad be\quad a\quad fraction\quad we\quad have\quad to\quad use\quad 5\quad logs\quad to\quad make\quad the\quad boat\\ Because\quad the\quad density\quad of\quad log\quad is\quad less\quad than\quad the\quad density\quad of\quad water\quad so\quad we\quad have\quad to\quad increase\quad it\quad to\quad an\quad integer\quad rather\quad decreasing\quad it.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...