Rational fools

Geometry Level 3

A = sin 1 5 B = cos 1 5 C = sin 1 5 cos 1 5 D = sin 1 5 cos 7 5 A = \sin 15^\circ \\ B=\cos 15^\circ \\ C= \sin 15^\circ\cos 15^\circ \\ D = \sin 15^\circ\cos 75^\circ

Which of the following is/are rational?

Only C C Only D D None of these C , D C,D B , C , D B,C,D A , B A,B

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Nihar Mahajan
Sep 3, 2015

A ) cos 3 0 = 1 2 sin 2 1 5 3 2 = 1 2 sin 2 1 5 3 = 2 4 sin 2 1 5 sin 2 1 5 = 2 3 4 sin 1 5 i s i r r a t i o n a l A) \ \cos 30^\circ = 1 - 2\sin^2 15^\circ \\ \Rightarrow \dfrac{\sqrt{3}}{2}= 1 - 2\sin^2 15^\circ \\ \Rightarrow \sqrt{3} = 2 - 4\sin^2 15^\circ \\ \Rightarrow \sin^2 15^\circ = \dfrac{2-\sqrt{3}}{4} \Rightarrow \sin 15^\circ \ is \ irrational

B ) sin 2 1 5 = 2 3 4 cos 2 1 5 = 1 2 3 4 cos 1 5 i s i r r a t i o n a l B) \sin^2 15^\circ = \dfrac{2-\sqrt{3}}{4} \\ \Rightarrow \cos^2 15^\circ = 1-\dfrac{2-\sqrt{3}}{4} \\ \Rightarrow \cos 15^\circ \ is \ irrational

C ) 2 sin 1 5 cos 1 5 = sin 3 0 = 1 2 sin 1 5 cos 1 5 i s r a t i o n a l C) 2\sin 15^\circ \cos 15^\circ =\sin 30^\circ = \dfrac{1}{2} \\ \Rightarrow \sin 15^\circ \cos 15^\circ \ is \ rational

D ) sin 1 5 cos 7 5 = sin 1 5 sin 1 5 = sin 2 1 5 = 2 3 4 sin 1 5 cos 7 5 i s i r r a t i o n a l D) \sin 15^\circ \cos 75^\circ = \sin 15^\circ \sin 15^\circ \\ =\sin^2 15^\circ = \dfrac{2-\sqrt{3}}{4} \\ \Rightarrow \sin 15^\circ \cos 75^\circ \ is \ irrational

Thus , only C C is rational.

I think you did something wrong in the calculation of value of C and also, it's rational!

คลุง แจ็ค - 5 years, 9 months ago

Log in to reply

I did not compute the actual value of C C . I computed 2 C 2C which is easier to compute and proved 2 C 2C as rational. Ultimately C C is also rational , since 2 2 is rational.

Nihar Mahajan - 5 years, 9 months ago

@Nihar Mahajan Please rephrase your solution. You also proved C to be irrational :P

Mehul Arora - 5 years, 9 months ago

Log in to reply

Oops , I just used "copy paste" and forgot to edit it to rational. Thanks for telling. :)

Nihar Mahajan - 5 years, 9 months ago

Log in to reply

You're welcome bro :)

Mehul Arora - 5 years, 9 months ago

C is rational mate.

Kushagra Sahni - 5 years, 9 months ago

Log in to reply

That was typing mistake!

Nihar Mahajan - 5 years, 9 months ago

Log in to reply

No problem mate, I upvoted your solution.

Kushagra Sahni - 5 years, 9 months ago

Log in to reply

@Kushagra Sahni Thanks! BTW In which grade are you in?

Nihar Mahajan - 5 years, 9 months ago

Log in to reply

@Nihar Mahajan I am in class 10.

Kushagra Sahni - 5 years, 9 months ago

Log in to reply

@Kushagra Sahni Me too. Tomorrow is Teacher's Day and I think you would be teaching lower grade students (I am going to teach :P) xD

Nihar Mahajan - 5 years, 9 months ago

Log in to reply

@Nihar Mahajan No I never have school on Saturday.

Kushagra Sahni - 5 years, 9 months ago

C must be = 1/4

Syed Baqir - 5 years, 9 months ago

Log in to reply

I computed 2 C 2C which much easier than to compute C C . And yes C = 1 4 2 C = 1 2 C= \dfrac{1}{4} \Rightarrow 2C=\dfrac{1}{2} which is what I got.

Nihar Mahajan - 5 years, 9 months ago
Syed Baqir
Sep 3, 2015

A = s i n 15 : A = 6 2 4 B = c o s 15 6 + 2 4 C = ( s i n 15 ) ( c o s 15 ) 1 4 D = ( s i n 15 ) ( c o s 75 ) 2 3 4 o n l y C i s r a t i o n a l , a l l o t h e r t h r e e o f t h e m a r e i r r a t i o n a l A\quad =\quad sin\quad 15\quad :\quad \\ A=\quad \frac { \sqrt { 6 } -\sqrt { 2 } }{ 4 } \\ B=\quad cos\quad 15\quad \Longrightarrow \frac { \sqrt { 6 } +\sqrt { 2 } }{ 4 } \\ C=\quad (sin15)*(cos15)\quad \Longrightarrow \frac { 1 }{ 4 } \\ D=(sin15)*(cos75)\Longrightarrow \frac { 2-\sqrt { 3 } }{ 4 } \\ \\ \therefore \quad only\quad C\quad is\quad rational\quad ,\quad all\quad other\quad three\quad of\quad them\quad are\quad irrational\quad

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...