Trigonometric Substitution Maybe?

Algebra Level 5

1 x + 1 1 x 2 = 35 12 \large \frac { 1 }{ x } +\frac { 1 }{ \sqrt { 1-{ x }^{ 2 } } } =\frac { 35 }{ 12 }

What is the sum of all real roots of the equation above? Give your answer to 3 decimal places.

Details and Assumptions

  • You may only use a scientific calculator to determine the square root of a number.
For more fantastic problems, click here


The answer is 0.43257.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Utkarsh Bansal
Feb 21, 2015

1 x + 1 1 x 2 = 35 12 . . . . . . ( 1 ) P u t , x = 1 u , 1 x 2 = 1 v . . . . . . . ( 2 ) f r o m ( 1 ) a n d ( 2 ) w e g e t , u + v = 35 12 , u 2 + v 2 = u 2 v 2 u v = 25 12 , 49 12 W h e n u v = 25 12 , w e g e t x = 3 5 , 4 5 W h e n u v = 49 12 , w e g e t x = ( 5 + 73 ) 14 S u m o f r e a l v a l u e s o f x = 3 5 + 4 5 + ( 5 + 73 ) 14 = 0.43257 \\ \frac { 1 }{ x } +\frac { 1 }{ \sqrt { 1-{ x }^{ 2 } } } =\frac { 35 }{ 12 } ......(1)\\ Put,x=\frac { 1 }{ u } ,\sqrt { 1-{ x }^{ 2 } } =\frac { 1 }{ v } .......(2)\\ from\quad (1)\quad and\quad (2)\quad we\quad get,\\ u+v=\frac { 35 }{ 12 } ,{ u }^{ 2 }+{ v }^{ 2 }={ u }^{ 2 }{ v }^{ 2 }\\ \Rightarrow uv=\frac { 25 }{ 12 } ,\frac { -49 }{ 12 } \\ When\quad uv=\frac { 25 }{ 12 } ,\quad we\quad get\quad x=\frac { 3 }{ 5 } ,\frac { 4 }{ 5 } \\ When\quad uv=\frac { -49 }{ 12 } ,\quad we\quad get\quad x=\frac { -(5+\sqrt { 73 } ) }{ 14 } \\ \therefore \quad Sum\quad of\quad real\quad values\quad of\quad x=\frac { 3 }{ 5 } +\frac { 4 }{ 5 } +\frac { -(5+\sqrt { 73 } ) }{ 14 } =\boxed { 0.43257 }

Seriously overrated!! @Utkarsh Bansal

Parth Lohomi - 6 years, 3 months ago

Log in to reply

If you think so then keep it up to you.I don't like such kind of comments.

Utkarsh Bansal - 6 years, 3 months ago

Log in to reply

I write what I think!! ¨ \ddot\smile

Parth Lohomi - 6 years, 3 months ago

Log in to reply

@Parth Lohomi Parth please submit your solution

Utkarsh Bansal - 6 years, 3 months ago

@Parth Lohomi Thats so useless - if you have feedback, present it. That not constructive

Johannes R - 5 years ago

L e t x = C o s A , s o S e c A + C o s e c A = 35 12 , s o C o s 1 3 5 , C o s 1 4 5 . x = 3 5 , 4 5 . M a n i p u l a t i n g a n d S i m p l i f y i n g , w e g e t a f o u r t h d e g r e e e q u a t i o n . Dividing this equation by (x-.6)(x-.8) and solving we get x= -0.96763 . t h e s u m = 0.43237. Let x=CosA, \ so \ SecA+CosecA=\dfrac{35}{12},\ so\ Cos^{-1}\frac 3 5,\ Cos^{-1}\frac 4 5.\\ \implies\ x=\frac 3 5, \frac 4 5.\\ Manipulating \ and\ Simplifying,\ we\ get\ a\ fourth\ degree\ equation.\\ \text{Dividing this equation by (x-.6)(x-.8) and solving we get x= -0.96763}.\\ \therefore \ the\ sum =0.43237.\\
The values can be checked on a graph.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...