Real values!

Algebra Level 4

Find the value of a -a for which the roots x 1 , x 2 , x 3 x_{1}, x_{2}, x_{3} of x 3 6 x 2 + a x a = 0 x^{ 3 }-6x^{2}+ax-a = 0 satisfy ( x 1 3 ) 3 + ( x 2 3 ) 3 + ( x 3 3 ) 3 = 0 \left( x_{1}-3 \right)^{3}+\left(x_{2}-3 \right)^{3}+\left(x_{3}-3 \right)^{ 3 } = 0 .


The answer is -9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Ahmed Arup Shihab
Feb 26, 2015

Let x i 3 = r i x_i-3=r_i for i = 1 , 2 , 3 i=1,2,3

r 1 , r 2 , r 3 r_1,r_2,r_3 are the roots of ( x + 3 ) 3 6 ( x + 3 ) 2 + a ( x + 3 ) a = 0 { (x+3) }^{ 3 }-{ 6(x+3) }^{ 2 }+a(x+3)-a=0

x 3 + 3 x 2 + ( a 9 ) x + 2 a 27 = 0 \Rightarrow x^3+3x^2+(a-9)x+2a-27=0

Using Vieta,

r 1 + r 2 + r 3 = 3 r_1+r_2+r_3=-3

r 1 r 2 + r 2 r 3 + r 3 r 1 = a 9 r_1r_2+r_2r_3+r_3r_1= a-9

r 1 r 2 r 3 = 27 2 a r_1r_2r_3=27-2a

We know,

r 1 3 + r 2 3 + r 3 3 3 r 1 r 2 r 3 = ( r 1 + r 2 + r 3 ) ( r 1 2 + r 2 2 + r 3 2 r 1 r 2 r 2 r 3 r 3 r 1 ) r_1^3+r_2^3+r_3^3-3r_1r_2r_3=(r_1+r_2+r_3)(r_1^2+r_2^2+r_3^2-r_1r_2-r_2r_3-r_3r_1)

r 1 3 + r 2 3 + r 3 3 3 r 1 r 2 r 3 = ( r 1 + r 2 + r 3 ) { ( r 1 + r 2 + r 3 ) 2 3 ( r 1 r 2 + r 2 r 3 + r 3 r 1 ) } \Rightarrow r_1^3+r_2^3+r_3^3-3r_1r_2r_3=(r_1+r_2+r_3)\{(r_1+r_2+r_3)^2-3(r_1r_2+r_2r_3+r_3r_1)\}

r 1 3 + r 2 3 + r 3 3 = 3 { 9 3 ( a 9 ) } + 3 ( 27 2 a ) = 0 [ G i v e n ] \Rightarrow r_1^3+r_2^3+r_3^3=-3\{9-3(a-9)\}+3(27-2a)=0 \ [Given]

Solving this , a = -9 -a=\fbox{-9}

But we have to find the value of a -a , which is 9 -9 !

@Ahmed Arup Shihab

Harsh Shrivastava - 6 years, 3 months ago

Log in to reply

even i tried 1st as -9 ??

avn bha - 6 years, 3 months ago

Log in to reply

But now it ask for the value of a a ! @Calvin Lin please look!!

Harsh Shrivastava - 6 years, 3 months ago

Log in to reply

@Harsh Shrivastava Thanks. I have updated the answer accordingly.

In future, if you spot any errors with a problem, you can “report” it by selecting "report problem" in the “dot dot dot” menu in the lower right corner. You will get a more timely response that way.

Calvin Lin Staff - 6 years, 3 months ago

I tried -9 at first.

I think there is a typo in the question.......

Ahmed Arup Shihab - 6 years, 3 months ago

i also tried -9 firstly. please edit the question.

Ashu Gupta - 6 years, 3 months ago

Log in to reply

Thanks. I have updated the answer accordingly.

In future, if you spot any errors with a problem, you can “report” it by selecting "report problem" in the “dot dot dot” menu in the lower right corner. You will get a more timely response that way.

Calvin Lin Staff - 6 years, 3 months ago
Ishan Dixit
Apr 20, 2017

Shouldn't be a level 5

x 3 6 x 2 + a x a = 0 x^{3}-6x^{2}+ax-a=0 \Rightarrow given

( x 3 9 x 2 + 27 x 27 ) + 3 x 2 + ( a 27 ) x ( a 27 ) = 0 (x^3-9x^2+27x-27)+3x^2+(a-27)x-(a-27)=0

( x 3 ) 3 + 3 x 2 + ( a 27 ) x ( a 27 ) = 0 (x-3)^3+3x^2+(a-27)x-(a-27)=0

i = 1 3 ( x i 3 ) 3 + 3 x i 2 + ( a 27 ) x i ( a 27 ) = 0 \sum_{i=1}^3(x_{i}-3)^3+3x_{i}^2+(a-27)x_{i}-(a-27)=0 where, x 1 , x 2 , x 3 x_{1},x_{2},x_{3} are roots

i = 1 3 ( x i 3 ) 3 = 0 \sum_{i=1}^3(x_{i}-3)^3=0 \Rightarrow given

\Rightarrow ( 3 ( i = 1 3 x i 2 ) + ( ( a 27 ) i = 1 3 x i ) ( ( a 27 ) i = 1 3 1 ) = 0 (3(\sum_{i=1}^3x_{i}^2)+((a-27)\sum_{i=1}^3x_{i})-((a-27)\sum_{i=1}^31)=0

i = 1 3 x i = 6 \sum_{i=1}^3x_{i}=6 \Rightarrow sum of roots

i = 1 3 x i 2 = ( x i ) 2 2 ( x 1 x 2 + x 2 x 3 + x 3 x 1 ) = 36 2 a \sum_{i=1}^3x_{i}^2=(\sum x_{i})^2-2(x_{1}x_{2}+x_{2}x_{3}+x_{3}x_{1})=36-2a

substituting these values we get

3 ( 36 2 a ) + ( a 27 ) 6 ( a 27 ) 3 = 0 3(36-2a)+(a-27)6-(a-27)3=0

\Rightarrow a = 9 a=9 or a = 9 -a=-9

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...