Regions

Is it possible to place every one of the following numbers 1 2 , 2 2 , 3 2 , 4 2 , 5 2 , , 2 5 2 , 2 6 2 , 2 7 2 1^2,\ 2^2,\ 3^2,\ 4^2,\ 5^2,\ \dots,\ 25^2,\ 26^2,\ 27^2 into either of the two regions A A and B B below such that the sums of the numbers in each region are equal?

Yes, it is possible No, it is not possible

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

9 solutions

Jesse Nieminen
Aug 9, 2017

This is not a number theoric solution!
Author of this problem should post a number theoric solution since this is categorized as number theory.

We can find all solutions using the following algorithm:

Note that 3465 3465 is half of the sum of all of the squares given by 27 28 55 6 = 6930 \dfrac{27 \cdot 28 \cdot 55}{6} = 6930 and hence sum of both A A and B B must be 3465 3465 .

  1. Start with 2 7 2 27^2 in A A .
  2. If sum of A A is 3465 3465 we have a solution with B B containing the squares not in A A .
  3. If 1 2 1^2 is in A A remove it. If A A is empty, end the algorithm. Otherwise replace the smallest square in A A with the largest square smaller than it and go to step 2.
  4. If sum of A A is greater than 3465 3465 , replace the smallest square in A A with the largest square smaller than it and go to step 2.
  5. Add the largest square smaller than the smallest square in A A to A A and go to step 2.

The algorithm works because it starts with 2 7 2 27^2 in A A and in each cycle it checks if the sum of the elements of A A is half of the sum of all of the squares and if it is we have a solution.

Then we continue to find the other solutions.
If we have 1 2 1^2 in A A we cannot continue with it there so we remove it, end the algorithm if A A is empty and otherwise make the smallest square in A A smaller and go back to check if we have a solution.
Now if the sum is too large, since we know that we don't have 1 2 1^2 in A A , we can just make the smallest square in A A smaller and go back to check if we have a solution.
Now we know that the sum is either less than or equal to the half of the sum of the squares, and since we know that we don't have 1 2 1^2 in A A , we just add the largest square smaller than the smallest square in A A to A A and go check if we have a solution.

After only few cycles of this algorithm we find that,

2 7 2 + + 2 3 2 + 1 7 2 + 5 2 + 4 2 = 2 2 2 + + 1 8 2 + 1 6 2 + 6 2 + 3 2 + 2 2 + 1 2 27^2 + \ldots + 23^2 + 17^2 + 5^2 + 4^2 = 22^2 + \ldots + 18^2 + 16^2 + \ldots 6^2 + 3^2 + 2^2 + 1^2 .

Hence the answer is Yes, it is possible \boxed{\text{Yes, it is possible}} .

How did you construct this solution?

Eli Ross Staff - 3 years, 10 months ago

Log in to reply

I edited my solution to include a description of the algorithm I used.

Jesse Nieminen - 3 years, 10 months ago
Dong kwan Yoo
Aug 16, 2017

I think it is little easy way to find A, B. By using " ( 4 k ) 2 ( 4 k + 1 ) 2 ( 4 k + 2 ) 2 + ( 4 k + 3 ) 2 = 4 (4k)^2 - (4k+1)^2 - (4k+2)^2 + (4k+3)^2 = 4 "

By this way,

2 4 2 2 5 2 2 6 2 + 2 7 2 24^2 - 25^2 - 26^2 + 27^2

= 2 0 2 2 1 2 2 2 2 + 2 3 2 20^2 - 21^2 - 22^2 + 23^2

= 1 6 2 1 7 2 1 8 2 + 1 9 2 16^2 - 17^2 - 18^2 + 19^2

= 1 2 2 1 3 2 1 4 2 + 1 5 2 12^2 - 13^2 - 14^2 + 15^2

= 8 2 9 2 1 0 2 + 1 1 2 8^2 - 9^2 - 10^2 + 11^2

= 4

And, considering about " ( o d d ) 2 1 ( m o d 8 ) (odd)^2 ≡ 1 (mod 8) "

1 , 4 , 9 , 16 , 25 , 36 , 49 : 1 , 4 , 1 , 0 , 1 , 4 , 1 ( m o d 8 ) 1 + 9 + 25 + 49 4 16 36 > 20 1, ~ 4, ~ 9, ~ 16, ~25, ~36, ~ 49 : 1, ~ 4, ~ 1, ~ 0, ~1,~ 4, ~ 1 (mod 8) ⇒ 1+9+25+49-4-16-36 > 20 so unable

1 4 9 16 25 36 49 64 81 100 121 : 1 4 1 0 1 4 1 0 1 4 1 ( m o d 8 ) 1 ~4~ 9~ 16~ 25~ 36 ~49 ~64~ 81~ 100 ~121 : 1~ 4~ 1~ 0 ~1 ~4 ~1~ 0~ 1~ 4~ 1 (mod8) => 121 81 49 25 9 1 = 44 ( i d e a : 1 1 1 1 1 4 ( m o d 8 ) ) 121-81-49-25-9-1 = -44 ( idea : 1-1-1-1-1 ≡ 4 (mod8) )

so 44 + 100 64 + 36 4 16 = 8 -44 + 100 - 64 + 36 - 4 - 16 = 8 and

2 4 2 2 5 2 2 6 2 + 2 7 2 24^2 - 25^2 - 26^2 + 27^2 - 2 0 2 2 1 2 2 2 2 + 2 3 2 20^2 - 21^2 - 22^2 + 23^2 - 1 6 2 1 7 2 1 8 2 + 1 9 2 16^2 - 17^2 - 18^2 + 19^2 - 1 2 2 1 3 2 1 4 2 + 1 5 2 12^2 - 13^2 - 14^2 + 15^2 = 8 = -8

so we can find!!

1 1 2 9 2 7 2 5 2 3 2 1 2 + 1 0 2 8 2 + 6 2 4 2 2 2 + 2 4 2 2 5 2 2 6 2 + 2 7 2 11^2 - 9^2 - 7^2 - 5^2 - 3^2 - 1^2 + 10^2 - 8^2 + 6^2 - 4^2 - 2^2 + 24^2 - 25^2 - 26^2 + 27^2

( 2 0 2 2 1 2 2 2 2 + 2 3 2 ) ( 1 6 2 1 7 2 1 8 2 + 1 9 2 ) ( 1 2 2 1 3 2 1 4 2 + 1 5 2 ) = 0 - ( 20^2 - 21^2 - 22^2 + 23^2 ) - ( 16^2 - 17^2 - 18^2 + 19^2 ) - ( 12^2 - 13^2 - 14^2 + 15^2 ) = 0

Wei Chen
Aug 14, 2017

Two more solutions:

First one is put 15 and all even numbers other than 6 into A, and 6 with all odd numbers other than 15 into B. That is:

15^2 + 2^2 + 4^2 + 8^2 + 10^2 + ... + 26^2 = 6^2 + 1^2 +3^2 + 5^2 + 7^2 + 9^2 + 11^2 + 13 ^2 + 17^2 + ... + 27^2

Second one is put 17 and all even numbers other than 10 into A, and 10 with all odd numbers other than 17 into B. That is:

17^2 + 2^2 + 4^2 + 6^2 + 8^2 + 12^2 + ... + 26^2 = 10^2 + 1^2 +3^2 + 5^2 + 7^2 + 9^2 + 11^2 + 13 ^2 + 15^2 + 19^2 + ... + 27^2

Nice! How did you construct these, Wei?

Eli Ross Staff - 3 years, 10 months ago

Log in to reply

I used modular 4 math. Since the sum of 1^2 to 27^2 is 6930, half of it is 3465, which is 1(mod 4). We know odd number squared is 1(mod4), and even number squared is 0(mod4). Suppose A region is the one with less odd numbers in it, then the number of odd numbers there has to be either 1 or 5.

For the case of one odd numbers in A, I just need to check 14 cases, from 1,3,... to 27. Since Sum of all even squared is 3276, to get to the desired sum of 3465, we have to start at 15, as 13^2<(3465-3279). Then it's easy to see that 15 and 17 works. Actually, we can generate a third solution from the second solution, by swapping 6,8 in A with 10 in B, as 6^2 + 8^2 =10^2.

For the case of 5 odd numbers in A, Jesse's solution is one of them. I don't know if there are other ones, or an easy way to check, there are a lot of combinations, selecting 5 out of 14.

Wei Chen - 3 years, 10 months ago

Log in to reply

Couldn't half of 2(mod4) be 3(mod4) as well? 6 is 2(mod4) but half 6 is 3, or 3(mod4)?

I'm really asking a question, not challenging your solution. I'm not very familiar with modular arithmetic.

Dylan Torrance - 3 years, 10 months ago

Log in to reply

@Dylan Torrance Yeah, you're right. So I can not use that argument to show the sum of A has to be 1(mod4). Instead, we can compute the sum of A to be 3465, and it is indeed 1(mod4). So the end result still stands, namely: "Suppose A region is the one with less odd numbers in it, then the number of odd numbers there has to be either 1 or 5."

I've edited my comment to reflect the change.

Wei Chen - 3 years, 10 months ago

Log in to reply

@Wei Chen Ok, I knew 3465 was 1(mod4), I just wasn't sure if there was some kind of rule in modular arithmetic that I wasn't familiar with. The solution looks good! Having just 14 possible solutions to check leaves much less to the luck of brute force than Jesse's. :)

Dylan Torrance - 3 years, 10 months ago

But how do u know which one to put in what?

Swapan Das - 3 years, 9 months ago

Log in to reply

Good question Swapan Das. Here's what I would do: first decide that if 2n goes in A, then 2n+1 goes in B, and vice versa. Then it turns into the question of making

± 1 ± 5 ± 9... ± 53 \pm 1 \pm 5 \pm 9 ... \pm 53

equal to zero by appropriate choices of pluses and minuses, etc.

Peter Byers - 3 years, 9 months ago

I realized that in order for A=B, both A and B need to be half of the sum of all numbers. I calculated (using an excel spreadsheet) that the sum is 6930 => A=B=6930/2=3465.

I then used the largest numbers , their sum not exceeding 3465, to find 27^2 + 26^2 + 25^2 + 24^2 + 23^2 = 529 + 576 + 625 + 676 + 729 = 3135 Then using the smaller numbers, I was able to find the missing 330; 2^2 + 6^2 + 11^2 + 13^2 = 4 + 36 + 121 + 169 = 330

From here it follows that the remaining numbers will also add up to 3465. Hence the answer is "Yes, it is possible".

I'd like to note that I was just quickly trying to see if it was possible to get a quick answer this way, which turned out to be possible, but I wouldn't know where to start a proof if it hadn't been possible, and would be curious to know if there is a more elegant solution. As well as that I'm curious to know how many possibilities there are!

Zeno van Ditzhuijzen - 3 years, 9 months ago
Kyle T
Aug 16, 2017

A) 9 + 16 + 25 + 49 + 64 + 81 + 100 + 121 + 144 + 169 + 196 + 225 + 256 + 324 + 361 + 400 + 441 + 484
B) 1 + 4 + 36 + 289 + 529 + 576 + 625 + 676 + 729

How did you get this partition?

Agnishom Chattopadhyay - 3 years, 9 months ago
Edwin Gray
Aug 14, 2017

4^2 + 8 2 + 16^2 + 23^2 + 24^2 + 25^2 + 26^2 + 27^2 = 3465 = (1/2) (6930) = sum from k = 1 to k = 27 of k^2. Ed Gray

Pardon my typo, 82 should be 8^2. Ed Gray

Edwin Gray - 3 years, 10 months ago

Actually, the sum is 3471, not 3465. The number of odds has to be 1 or 5, not 3 as in your set. See my comment above.

Wei Chen - 3 years, 10 months ago

Could you explain how you got this set?

Agnishom Chattopadhyay - 3 years, 9 months ago
A Steven Kusuman
Aug 17, 2017

dynamic programming for the win

True. Wanna share your code? :)

Agnishom Chattopadhyay - 3 years, 9 months ago
Piyushkumar Palan
Aug 16, 2017

I got it as squares of numbers from 5 to 20 and 25 add to 3465.

Omg..so many solutions exist...how many?

Total instances 55626

runfile('C:/Users/Fitzgeralds/mystuff/combinations totalling X.py', wdir='C:/Users/Fitzgeralds/mystuff')

What is the low end of the integer range? : 1 What is the high end of the integer range? : 27

Target value for sum of squares split between Region A and Region B: 3465.00

Region A: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 20 21 22 24 Region B: 16 17 19 23 25 26 27
Region A: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 18 19 20 22 25 Region B: 15 17 21 23 24 26 27
Region A: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 18 21 22 24 25 Region B: 15 16 17 19 20 23 26 27
Region A: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 19 20 22 23 26 Region B: 15 16 17 18 21 24 25 27
Region A: 1 2 3 4 5 6 7 8 9 10 11 12 13 15 18 19 22 24 26 Region B: 14 16 17 20 21 23 25 27
Region A: 1 2 3 4 5 6 7 8 9 10 11 12 13 16 18 19 20 24 27 Region B: 14 15 17 21 22 23 25 26
Region A: 1 2 3 4 5 6 7 8 9 10 11 12 14 15 17 18 23 24 26 Region B: 13 16 19 20 21 22 25 27
Region A: 1 2 3 4 5 6 7 8 9 10 11 12 14 17 20 24 25 27 Region B: 13 15 16 18 19 21 22 23 26
Region A: 1 2 3 4 5 6 7 8 9 10 11 12 14 17 21 22 26 27 Region B: 13 15 16 18 19 20 23 24 25
Region A: 1 2 3 4 5 6 7 8 9 10 11 12 14 18 19 23 26 27 Region B: 13 15 16 17 20 21 22 24 25
Region A: 1 2 3 4 5 6 7 8 9 10 11 12 15 16 20 23 26 27 Region B: 13 14 17 18 19 21 22 24 25
Region A: 1 2 3 4 5 6 7 8 9 10 11 12 16 17 18 20 21 23 24 Region B: 13 14 15 19 22 25 26 27
Region A: 1 2 3 4 5 6 7 8 9 10 11 12 16 23 25 26 27 Region B: 13 14 15 17 18 19 20 21 22 24
Region A: 1 2 3 4 5 6 7 8 9 10 11 12 17 20 21 22 24 25 Region B: 13 14 15 16 18 19 23 26 27
Region A: 1 2 3 4 5 6 7 8 9 10 11 12 18 19 20 23 24 25 Region B: 13 14 15 16 17 21 22 26 27
Region A: 1 2 3 4 5 6 7 8 9 10 11 12 18 19 21 22 23 26 Region B: 13 14 15 16 17 20 24 25 27
Region A: 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 18 22 24 27 Region B: 12 17 19 20 21 23 25 26
Region A: 1 2 3 4 5 6 7 8 9 10 11 13 14 17 18 24 26 27 Region B: 12 15 16 19 20 21 22 23 25
Region A: 1 2 3 4 5 6 7 8 9 10 11 13 16 17 18 19 20 22 26 Region B: 12 14 15 21 23 24 25 27
Region A: 1 2 3 4 5 6 7 8 9 10 11 13 17 18 21 22 24 26 Region B: 12 14 15 16 19 20 23 25 27
Region A: 1 2 3 4 5 6 7 8 9 10 11 14 15 18 22 23 24 25 Region B: 12 13 16 17 19 20 21 26 27
Region A: 1 2 3 4 5 6 7 8 9 10 11 14 15 19 21 22 24 26 Region B: 12 13 16 17 18 20 23 25 27
Region A: 1 2 3 4 5 6 7 8 9 10 11 14 16 18 21 22 23 27 Region B: 12 13 15 17 19 20 24 25 26
Region A: 1 2 3 4 5 6 7 8 9 10 11 14 16 19 20 21 24 27 Region B: 12 13 15 17 18 22 23 25 26
Region A: 1 2 3 4 5 6 7 8 9 10 11 14 17 18 19 22 24 27 Region B: 12 13 15 16 20 21 23 25 26
Region A: 1 2 3 4 5 6 7 8 9 10 11 15 16 17 20 22 24 27 Region B: 12 13 14 18 19 21 23 25 26
Region A: 1 2 3 4 5 6 7 8 9 10 11 16 17 22 24 25 27 Region B: 12 13 14 15 18 19 20 21 23 26





…………………………………………

…………………………………………

…………………………………………

Region A: 11 12 15 16 17 20 21 22 23 24 Region B: 1 2 3 4 5 6 7 8 9 10 13 14 18 19 25 26 27
Region A: 11 12 15 16 17 20 25 26 27 Region B: 1 2 3 4 5 6 7 8 9 10 13 14 18 19 21 22 23 24
Region A: 11 12 15 17 18 19 20 21 22 26 Region B: 1 2 3 4 5 6 7 8 9 10 13 14 16 23 24 25 27
Region A: 11 12 15 19 20 22 23 24 25 Region B: 1 2 3 4 5 6 7 8 9 10 13 14 16 17 18 21 26 27
Region A: 11 12 16 17 21 22 23 24 25 Region B: 1 2 3 4 5 6 7 8 9 10 13 14 15 18 19 20 26 27
Region A: 11 12 16 19 20 21 22 23 27 Region B: 1 2 3 4 5 6 7 8 9 10 13 14 15 17 18 24 25 26
Region A: 11 12 17 18 19 21 22 25 26 Region B: 1 2 3 4 5 6 7 8 9 10 13 14 15 16 20 23 24 27
Region A: 11 13 14 15 17 22 24 26 27 Region B: 1 2 3 4 5 6 7 8 9 10 12 16 18 19 20 21 23 25
Region A: 11 13 14 15 18 20 21 22 23 24 Region B: 1 2 3 4 5 6 7 8 9 10 12 16 17 19 25 26 27
Region A: 11 13 14 15 18 20 25 26 27 Region B: 1 2 3 4 5 6 7 8 9 10 12 16 17 19 21 22 23 24
Region A: 11 13 14 16 18 19 20 22 23 25 Region B: 1 2 3 4 5 6 7 8 9 10 12 15 17 21 24 26 27
Region A: 11 13 14 18 21 22 23 24 25 Region B: 1 2 3 4 5 6 7 8 9 10 12 15 16 17 19 20 26 27
Region A: 11 13 15 18 19 22 23 24 26 Region B: 1 2 3 4 5 6 7 8 9 10 12 14 16 17 20 21 25 27
Region A: 11 13 15 18 20 21 22 25 26 Region B: 1 2 3 4 5 6 7 8 9 10 12 14 16 17 19 23 24 27
Region A: 11 13 16 17 20 21 22 24 27 Region B: 1 2 3 4 5 6 7 8 9 10 12 14 15 18 19 23 25 26
Region A: 11 13 16 18 19 20 23 24 27 Region B: 1 2 3 4 5 6 7 8 9 10 12 14 15 17 21 22 25 26
Region A: 11 13 19 20 22 24 25 27 Region B: 1 2 3 4 5 6 7 8 9 10 12 14 15 16 17 18 21 23 26
Region A: 11 14 15 16 17 18 19 21 24 26 Region B: 1 2 3 4 5 6 7 8 9 10 12 13 20 22 23 25 27
Region A: 11 14 15 16 17 18 20 21 22 27 Region B: 1 2 3 4 5 6 7 8 9 10 12 13 19 23 24 25 26
Region A: 11 14 15 18 19 20 22 25 27 Region B: 1 2 3 4 5 6 7 8 9 10 12 13 16 17 21 23 24 26
Region A: 11 14 16 17 18 21 22 25 27 Region B: 1 2 3 4 5 6 7 8 9 10 12 13 15 19 20 23 24 26
Region A: 11 14 17 20 23 24 25 27 Region B: 1 2 3 4 5 6 7 8 9 10 12 13 15 16 18 19 21 22 26
Region A: 11 14 17 21 22 23 26 27 Region B: 1 2 3 4 5 6 7 8 9 10 12 13 15 16 18 19 20 24 25
Region A: 11 15 16 17 18 19 22 26 27 Region B: 1 2 3 4 5 6 7 8 9 10 12 13 14 20 21 23 24 25
Region A: 11 17 20 21 22 23 24 25 Region B: 1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 18 19 26 27
Region A: 12 13 14 15 16 17 18 19 21 22 24 Region B: 1 2 3 4 5 6 7 8 9 10 11 20 23 25 26 27
Region A: 12 13 14 15 18 19 20 21 23 26 Region B: 1 2 3 4 5 6 7 8 9 10 11 16 17 22 24 25 27
Region A: 12 13 14 18 19 21 23 25 26 Region B: 1 2 3 4 5 6 7 8 9 10 11 15 16 17 20 22 24 27
Region A: 12 13 15 16 20 21 23 25 26 Region B: 1 2 3 4 5 6 7 8 9 10 11 14 17 18 19 22 24 27
Region A: 12 13 15 17 18 22 23 25 26 Region B: 1 2 3 4 5 6 7 8 9 10 11 14 16 19 20 21 24 27
Region A: 12 13 15 17 19 20 24 25 26 Region B: 1 2 3 4 5 6 7 8 9 10 11 14 16 18 21 22 23 27
Region A: 12 13 16 17 18 20 23 25 27 Region B: 1 2 3 4 5 6 7 8 9 10 11 14 15 19 21 22 24 26
Region A: 12 13 16 17 19 20 21 26 27 Region B: 1 2 3 4 5 6 7 8 9 10 11 14 15 18 22 23 24 25
Region A: 12 14 15 16 19 20 23 25 27 Region B: 1 2 3 4 5 6 7 8 9 10 11 13 17 18 21 22 24 26
Region A: 12 14 15 21 23 24 25 27 Region B: 1 2 3 4 5 6 7 8 9 10 11 13 16 17 18 19 20 22 26
Region A: 12 15 16 19 20 21 22 23 25 Region B: 1 2 3 4 5 6 7 8 9 10 11 13 14 17 18 24 26 27
Region A: 12 17 19 20 21 23 25 26 Region B: 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 18 22 24 27
Region A: 13 14 15 16 17 20 24 25 27 Region B: 1 2 3 4 5 6 7 8 9 10 11 12 18 19 21 22 23 26
Region A: 13 14 15 16 17 21 22 26 27 Region B: 1 2 3 4 5 6 7 8 9 10 11 12 18 19 20 23 24 25
Region A: 13 14 15 16 18 19 23 26 27 Region B: 1 2 3 4 5 6 7 8 9 10 11 12 17 20 21 22 24 25
Region A: 13 14 15 17 18 19 20 21 22 24 Region B: 1 2 3 4 5 6 7 8 9 10 11 12 16 23 25 26 27
Region A: 13 14 15 19 22 25 26 27 Region B: 1 2 3 4 5 6 7 8 9 10 11 12 16 17 18 20 21 23 24
Region A: 13 14 17 18 19 21 22 24 25 Region B: 1 2 3 4 5 6 7 8 9 10 11 12 15 16 20 23 26 27
Region A: 13 15 16 17 20 21 22 24 25 Region B: 1 2 3 4 5 6 7 8 9 10 11 12 14 18 19 23 26 27
Region A: 13 15 16 18 19 20 23 24 25 Region B: 1 2 3 4 5 6 7 8 9 10 11 12 14 17 21 22 26 27
Region A: 13 15 16 18 19 21 22 23 26 Region B: 1 2 3 4 5 6 7 8 9 10 11 12 14 17 20 24 25 27
Region A: 13 16 19 20 21 22 25 27 Region B: 1 2 3 4 5 6 7 8 9 10 11 12 14 15 17 18 23 24 26
Region A: 14 15 17 21 22 23 25 26 Region B: 1 2 3 4 5 6 7 8 9 10 11 12 13 16 18 19 20 24 27
Region A: 14 16 17 20 21 23 25 27 Region B: 1 2 3 4 5 6 7 8 9 10 11 12 13 15 18 19 22 24 26
Region A: 15 16 17 18 21 24 25 27 Region B: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 19 20 22 23 26
Region A: 15 16 17 19 20 23 26 27 Region B: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 18 21 22 24 25
Region A: 15 17 21 23 24 26 27 Region B: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 18 19 20 22 25
Region A: 16 17 19 23 25 26 27 Region B: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 20 21 22 24

Total instances 55626

Michael Fitzgerald - 3 years, 9 months ago

Less than half of 1% of all possible combinations 55,626, 134,217,727, 0.04144%
Number of Comb 1 27 2 351 3 2,925 4 17,550 5 80,730 6 296,010 7 888,030 8 2,220,075 9 4,686,825 10 8,436,285 11 13,037,895 12 17,383,860 13 20,058,300 14 20,058,300 15 17,383,860 16 13,037,895 17 8,436,285 18 4,686,825 19 2,220,075 20 888,030 21 296,010 22 80,730 23 17,550 24 2,925 25 351 26 27 27 1 55,626 134,217,727 0.04144%

Michael Fitzgerald - 3 years, 9 months ago

Log in to reply

55626 instances? If we consider only the groups and not the order of the numbers there are only 3280 posible answers. How many of this posible answers are correct answers?

Agustin B - 3 years, 9 months ago
Michael Chapman
Aug 18, 2017

Denote A(n)=n (n+1) (2n+1)/6. Then A(22)-A(10)+A(5)=3465. But A(22)-A(10)+A(5)=1^2+...+5^2+11^2+...+22^2 and thus $$1^2+...+5^2+11^2+...+22^2=6^2+...+10^2+23^2+...+27^2$$.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...