Reminder of Remainders

What is the remainder when

1 7 + 2 7 + 3 7 + + 9 9 7 + 10 0 7 \large 1^{7}+2^{7}+3^{7}+\cdots + 99^{7}+100^{7}

is divided by 4?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Adarsh Kumar
Sep 8, 2014

F o r u n d e r s t a n d i n g t h i s y o u w i l l n e e d t o k n o w t h a t a m + b m i s d i v i s i b l e b y a + b f o r o d d m . For\ understanding\ this\ you\ will\ need\ to \ know\ that\ a^{m}+b^{m}\ is\ divisible\ by \ a+b\ for\ odd\ m. \Longrightarrow 1 7 + 9 9 7 i s d i v i s i b l e b y 100 1^{7}+99^{7}\ is\ divisible\ by\ 100 \Longrightarrow 1 7 + 9 9 7 i s d i v i s i b l e b y 4. 1^{7}+99^{7}\ is\ divisible\ by\ 4. S a m e w i t h ( 2 , 98 ) ( 3 , 97 ) ( 4 , 96 ) . . . . . . . ( 49 , 51 ) Same\ with\ (2,98)\ (3,97)\ (4,96) .......(49,51) T h u s w e j u s t n e e d t o f i n d t h e r e m a i n d e r w h e n 10 0 7 i s d i v i d e d b y 4. Thus\ we\ just\ need\ to\ find\ the\ remainder\ when\ 100^{7} \ is\ divided\ by\ 4. W h i c h i s z e r o . Which\ is\ zero. T h u s , t h e a n s w e r i s 0. Thus,the\ answer\ is\ 0.

Very true.. what can be done otherwise ;) ? (think )

Krishna Ar - 6 years, 9 months ago

Log in to reply

1 7 + 2 7 + 3 7 + + 9 9 7 + 10 0 7 1^7+2^7+3^7+\cdots+99^7+100^7

33 ( 1 7 + 2 7 + 3 7 ) \equiv 33(1^7+2^7+3^7)

1 7 + 2 7 + ( 1 ) 7 2 7 0 ( m o d 4 ) \equiv 1^7+2^7+(-1)^7\equiv 2^7\equiv \boxed{0}\pmod {4}

mathh mathh - 6 years, 9 months ago

Log in to reply

Exactly. You're super cool!

Krishna Ar - 6 years, 9 months ago

what did you do in first step?

Manish Mayank - 6 years, 6 months ago

Log in to reply

@Manish Mayank He took modulo 4 4 . 4 7 , 5 7 , 6 7 , 4^7,~5^7,~6^7,\cdots become 1 7 , 2 7 , 3 7 , 1^7,~2^7,~3^7,\cdots .

Omkar Kulkarni - 6 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...