Repeated decimal, part 3

0. 0009182736455463728191 = 1 N 0.\overline{0009182736455463728191}=\frac{1}{N}

Given that N N is a 4-digit integer, find N N .

Note : The repeated digits are from 00, 09, 18, ..., 81,(those multiple 9), followed by 91, the period is 22.


The answer is 1089.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chinmay Krishna
Jan 1, 2017

Note that 1 N = 9 10000 + 18 1000000 + 27 100000000 \dfrac{1}{N}=\dfrac{9}{10000}+\dfrac{18}{1000000}+\dfrac{27}{100000000}\cdots .

Multiply by 100. 100 N = 9 100 + 18 10000 + 27 1000000 \dfrac{100}{N}=\dfrac{9}{100}+\dfrac{18}{10000}+\dfrac{27}{1000000}\cdots

100 N 1 N = 99 N = 9 100 + 9 10000 + 9 1000000 \dfrac{100}{N}-\dfrac{1}{N}=\dfrac{99}{N}=\dfrac{9}{100}+\dfrac{9}{10000}+\dfrac{9}{1000000}\cdots

99 N = 9 100 1 1 100 = 1 11 \dfrac{99}{N}=\dfrac{\dfrac{9}{100}}{1-\dfrac{1}{100}}=\dfrac{1}{11}

99 N = 1 11 N = 11 × 99 = 1089 \dfrac{99}{N}=\dfrac{1}{11}\implies N=11\times99=\boxed{1089}

Best solution

Niladri Dan - 4 years, 4 months ago

how do you go from 99/N to (9/100)/(1-1/100)?

Jessiah O'Neill - 2 years, 11 months ago

Log in to reply

That's sum of geometric series!

Akshay Krishna - 2 years, 7 months ago

sum to infinity of a geometric series with a common ratio (abs) < 1

Diego Estevez - 1 year, 11 months ago
Chew-Seong Cheong
Dec 29, 2015

For a decimal number less than 1 1 with repeated digits of an integer n n as 0. n ˙ 0.\dot{n} with a period of p p is given as below:

0. n ˙ = n ( 1 1 0 p + 1 1 0 2 p + 1 1 0 3 p + . . . ) = n 1 0 p ( 1 1 1 1 0 p ) = n 1 0 p 1 \begin{aligned} 0.\dot{n} & = n \left(\frac{1}{10^p} + \frac{1}{10^{2p}} + \frac{1}{10^{3p}} +... \right) = \frac{n}{10^p}\left(\frac{1}{1-\frac{1}{10^p}} \right) = \frac{n}{10^p-1} \end{aligned}

For n = 9182736455463728191 n = 9182736455463728191 and p = 22 p=22 , we have:

0. \ddddot 0009182736455463728191 = 9182736455463728191 1 0 22 1 = 1 N N = 1 0 22 1 9182736455463728191 = 9 , 999 , 999 , 999 , 999 , 999 , 999 , 999 9 , 182 , 736 , 455 , 463 , 728 , 191 \begin{aligned} 0.\ddddot{0009182736455463728191} & = \frac{9182736455463728191}{10^{22}-1} = \frac{1}{N} \\ \Rightarrow N & = \frac{10^{22}-1}{9182736455463728191} \\ & = \frac{9,999,999,999,999,999,999,999}{9,182,736,455,463,728,191} \end{aligned}

Since N N is a 4-digit number, let N = 1000 A + 100 B + 10 C + D = A B C D N = 1000A + 100B + 10C + D = \overline{ABCD} , where A A , B B , C C and D D are positive integer less than 10 10 . Then, we have:

9 , 182 , 736 , 455 , 463 , 728 , 191 N = 9 , 999 , 999 , 999 , 999 , 999 , 999 , 999 9 , 182 , 736 , 455 , 463 , 728 , 191 × A B C D = 9 , 999 , 999 , 999 , 999 , 999 , 999 , 999 \begin{aligned} 9,182,736,455,463,728,191 N & = 9,999,999,999,999,999,999,999 \\ 9,182,736,455,463,728,191 \times \overline{ABCD} & = 9,999,999,999,999,999,999,999 \end{aligned}

Using long multiplication, we have:

9 , 182 , 736 , 455 , 463 , 728 , 191 × A B C D 8 , 2644 , 628 , 099 , 173 , 553 , 719 n × 9 D = 9 for the product to end with ......9 734 , 618 , 916 , 437 , 098 , 255 , 280 n × 80 C = 8 for the product to end with .....99 0 n × 0 B = 0 for the product to end with ....999 9 , 182 , 736 , 455 , 463 , 728 , 191 , 000 n × 1000 A = 1 for the product to end with ...9999 9 , 999 , 999 , 999 , 999 , 999 , 999 , 999 \begin{array} {rrll} & 9,182,736,455,463,728,191 \\ \times & \overline{ABCD} \\ \hline & 8,2644,628,099,173,553,719 & \color{#3D99F6}{\Leftarrow n \times 9} & \color{#3D99F6}{D = 9 \text{ for the product to end with ......9}} \\ & 734,618,916,437,098,255,280 & \color{#3D99F6}{\Leftarrow n \times 80} & \color{#3D99F6}{C = 8 \text{ for the product to end with .....99}} \\ & 0 & \color{#3D99F6}{\Leftarrow n \times 0} & \color{#3D99F6}{B = 0 \text{ for the product to end with ....999}} \\ & 9,182,736,455,463,728,191,000 & \color{#3D99F6}{\Leftarrow n \times 1000} & \color{#3D99F6}{A = 1 \text{ for the product to end with ...9999}} \\ \hline & 9,999,999,999,999,999,999,999 \end{array}

N = 1089 \Rightarrow N = \boxed{1089}

I got it till the fraction but how did you evaluate it?

Adarsh Kumar - 5 years, 5 months ago

Log in to reply

Yup doing it by hand is tedious.

Harsh Shrivastava - 5 years, 5 months ago

Log in to reply

I have redone the solution. Hope you like it.

Chew-Seong Cheong - 5 years, 5 months ago

I cheated using Wolfram Alpha, you and click and see here .

Chew-Seong Cheong - 5 years, 5 months ago

Log in to reply

Ohk no problem.

Adarsh Kumar - 5 years, 5 months ago

I have redone the solution. Hope you like it.

Chew-Seong Cheong - 5 years, 5 months ago

Log in to reply

@Chew-Seong Cheong Thanx a lot.

Adarsh Kumar - 5 years, 5 months ago
Vinayak Trivedi
Sep 17, 2017

Just divide 1 by the given number, you will get N (simple maths, if X=1/Y, then Y=1/X)

Essentially what I did.

Bert Seegmiller - 3 years, 3 months ago

Log in to reply

It's a pretty good approximation!

Sol Rey - 1 year, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...