n = 1 ∑ ∞ n ( n + 1 ) ( − 1 ) n − 1 η ( n ) = ln ( 2 h d e I r A R π n a )
The equation above holds true for positive integers r , a , n , d , h , I , R , where g cd ( a , n ) = g cd ( d , h ) = g cd ( r , 2 ) = 1 . Find r + a + n + d + h + I + R
Notations:
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Now this is a perfect answer.....
Log in to reply
@Darkrai ~Rayquaza Hey, here's a fun fact........find the value of
∫ 0 1 ∫ 0 1 ( 1 + x y ) ( ln x y ) 2 ( 1 − x ) d x d y
Log in to reply
The answer is on this page
Log in to reply
@Aaghaz Mahajan – The substitutions x = e − u , y = e − v gives ∫ 0 1 ∫ 0 1 ( 1 + x y ) ( ln ( x y ) ) 2 1 − x d x d y = ∫ 0 ∞ ∫ 0 ∞ ( u + v ) 2 ( 1 + e u + v ) 1 − e − u d u d v and then the substitution U = u + v , V = u gives ∫ 0 1 ∫ 0 1 ( 1 + x y ) ( ln ( x y ) ) 2 1 − x d x d y = ∫ 0 ∞ U 2 ( 1 + e U ) 1 ∫ 0 U ( 1 − e − V ) d V d U = ∫ 0 ∞ U 2 ( 1 + e U ) e − U − 1 + U d U = n = 1 ∑ ∞ ( n + 1 ) ! ( − 1 ) n − 1 ∫ 0 ∞ e x + 1 x n − 1 d x = n = 1 ∑ ∞ n ( n + 1 ) ( − 1 ) n − 1 η ( n ) so this integral is identical with the sum in the question.
Log in to reply
@Mark Hennings – Yes sir!!! This is what I did!!! But, I was just surprised to see that even this integral is well known and has a special name!!!
e ∑ n = 1 ∞ n ( n + 1 ) ( − 1 ) n − 1 η ( n ) ⇒ 2 6 2 e π A 6
1 + 1 + 2 + 7 + 6 + 1 + 6 ⇒ 2 4
How did you get this result?
Log in to reply
Try my solution.
Problem Loading...
Note Loading...
Set Loading...
First note that n = 1 ∑ ∞ n ( n + 1 ) ( − 1 ) n − 1 = 2 ln 2 − 1 and that S = n = 1 ∑ ∞ n ( n + 1 ) ( − 1 ) n − 1 η ( n ) = n = 1 ∑ ∞ n ( n + 1 ) ( − 1 ) n − 1 m = 1 ∑ ∞ m n ( − 1 ) m − 1 = m = 1 ∑ ∞ ( − 1 ) m − 1 n = 1 ∑ ∞ n ( n + 1 ) ( − 1 ) n − 1 ( m 1 ) n = 2 ln 2 − 1 + m = 2 ∑ ∞ ( − 1 ) m − 1 n = 1 ∑ ∞ ( − 1 ) n − 1 [ n 1 − n + 1 1 ] ( m 1 ) m = 2 ln 2 − 1 + m = 2 ∑ ∞ ( − 1 ) m − 1 { ln ( 1 + m 1 ) + n = 1 ∑ ∞ n + 1 ( − 1 ) n ( m 1 ) n } = 2 ln 2 − 1 + m = 2 ∑ ∞ ( − 1 ) m − 1 { ln ( 1 + m 1 ) + m [ ln ( 1 + m 1 ) − m 1 ] } = m = 1 ∑ ∞ ( − 1 ) m − 1 { ( m + 1 ) ln ( m m + 1 ) − 1 } Note that m = 1 ∑ ∞ n = 1 ∑ ∞ n ( n + 1 ) m n 1 < ∞ and so reversing the order of summation in the above argument is valid, and all series involved in the above calculation are absolutely convergent. Thus S = lim M → ∞ S M where S M = m = 1 ∑ 2 M ( − 1 ) m − 1 { ( m + 1 ) ln ( m m + 1 ) − 1 } = m = 1 ∑ 2 M ( − 1 ) m − 1 ( m + 1 ) ln ( m + 1 ) + m = 1 ∑ 2 M ( − 1 ) m ( m + 1 ) ln m = m = 2 ∑ 2 M + 1 ( − 1 ) m m ln m + m = 1 ∑ 2 M ( − 1 ) m ( m + 1 ) ln m = − ( 2 M + 1 ) ln ( 2 M + 1 ) + 2 m = 1 ∑ 2 M ( − 1 ) m m ln m + m = 1 ∑ 2 M ( − 1 ) m ln m Now m = 1 ∑ 2 M ( − 1 ) m ln m m = 1 ∑ 2 M ( − 1 ) m m ln m = ln ( 1 × 3 × ⋯ × ( 2 M − 1 ) 2 × 4 × ⋯ × 2 M ) = ln ( ( 2 M ! ) 2 2 M ( M ! ) 2 ) = ln ( 1 1 × 3 3 × ⋯ × ( 2 M − 1 ) 2 M − 1 2 2 × 4 4 × ⋯ × ( 2 M ) 2 M ) = ln ( P 2 M 2 2 M ( M + 1 ) P M 4 ) where P M = m = 1 ∏ M m m Stirling's approximation tells us that ( 2 M ) ! 2 2 M ( M ! ) 2 = π M K M where lim M → ∞ K M = 1 . Moreover P M = M 2 1 M 2 + 2 1 M + 1 2 1 e − 4 1 M 2 Q M where lim M → ∞ Q M = A , the Glaisher-Kinkelin constant. Substituting all this in gives M → ∞ lim S M = M → ∞ lim ln ( 2 6 7 ( 1 + 2 M 1 ) 2 M + 1 1 Q 2 M 2 Q M 8 π K M ) = ln ( 2 6 7 e A 6 π ) making the answer 1 + 1 + 2 + 7 + 6 + 1 + 6 = 2 4 .