Interesting Eta????

Calculus Level 3

n = 1 ( 1 ) n 1 n ( n + 1 ) η ( n ) = ln ( r A R π a n 2 d h e I ) \large \sum_{n=1}^{\infty} \frac {(-1)^{n-1}}{n(n+1)} \eta(n)= \ln\left(\dfrac {rA^{R}\pi^{\frac an}}{2^{\frac dh}e^I}\right)

The equation above holds true for positive integers r , a , n , d , h , I , R r, a, n, d, h, I, R , where gcd ( a , n ) = gcd ( d , h ) = gcd ( r , 2 ) = 1 \gcd (a,n)=\gcd(d,h)=\gcd(r,2)=1 . Find r + a + n + d + h + I + R r+a+n+d+h+I+R

Notations:

  • η ( ) \eta(\cdot) denotes the Dirichlet eta function.
  • A A denotes the Glaisher-Kinkelin constant.


The answer is 24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Apr 26, 2019

First note that n = 1 ( 1 ) n 1 n ( n + 1 ) = 2 ln 2 1 \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n(n+1)} = 2\ln2 - 1 and that S = n = 1 ( 1 ) n 1 n ( n + 1 ) η ( n ) = n = 1 ( 1 ) n 1 n ( n + 1 ) m = 1 ( 1 ) m 1 m n = m = 1 ( 1 ) m 1 n = 1 ( 1 ) n 1 n ( n + 1 ) ( 1 m ) n = 2 ln 2 1 + m = 2 ( 1 ) m 1 n = 1 ( 1 ) n 1 [ 1 n 1 n + 1 ] ( 1 m ) m = 2 ln 2 1 + m = 2 ( 1 ) m 1 { ln ( 1 + 1 m ) + n = 1 ( 1 ) n n + 1 ( 1 m ) n } = 2 ln 2 1 + m = 2 ( 1 ) m 1 { ln ( 1 + 1 m ) + m [ ln ( 1 + 1 m ) 1 m ] } = m = 1 ( 1 ) m 1 { ( m + 1 ) ln ( m + 1 m ) 1 } \begin{aligned} S & = \; \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n(n+1)}\eta(n) \; = \; \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n(n+1)}\sum_{m=1}^\infty \frac{(-1)^{m-1}}{m^n} \\ & = \; \sum_{m=1}^\infty (-1)^{m-1}\sum_{n=1}^\infty \frac{(-1)^{n-1}}{n(n+1)}\big(\tfrac{1}{m}\big)^n \; = \; 2\ln2 - 1 + \sum_{m=2}^\infty (-1)^{m-1}\sum_{n=1}^\infty (-1)^{n-1}\left[\tfrac{1}{n} - \tfrac{1}{n+1}\right]\big(\tfrac{1}{m}\big)^m \\ & = \; 2\ln2 - 1 + \sum_{m=2}^\infty(-1)^{m-1}\left\{\ln\big(1 + \tfrac{1}{m}\big) + \sum_{n=1}^\infty \frac{(-1)^n}{n+1}\big(\tfrac{1}{m}\big)^n\right\} \; = \; 2\ln2 - 1 + \sum_{m=2}^\infty (-1)^{m-1}\left\{\ln\big(1 + \tfrac{1}{m}\big) + m\left[\ln\big(1 + \tfrac{1}{m}\big) - \tfrac{1}{m}\right]\right\} \\ & = \; \sum_{m=1}^\infty (-1)^{m-1}\left\{(m+1)\ln\big(\tfrac{m+1}{m}\big) - 1\right\} \end{aligned} Note that m = 1 n = 1 1 n ( n + 1 ) m n < \sum_{m=1}^\infty \sum_{n=1}^\infty \frac{1}{n(n+1)m^n} \; < \; \infty and so reversing the order of summation in the above argument is valid, and all series involved in the above calculation are absolutely convergent. Thus S = lim M S M S = \lim_{M \to \infty}S_M where S M = m = 1 2 M ( 1 ) m 1 { ( m + 1 ) ln ( m + 1 m ) 1 } = m = 1 2 M ( 1 ) m 1 ( m + 1 ) ln ( m + 1 ) + m = 1 2 M ( 1 ) m ( m + 1 ) ln m = m = 2 2 M + 1 ( 1 ) m m ln m + m = 1 2 M ( 1 ) m ( m + 1 ) ln m = ( 2 M + 1 ) ln ( 2 M + 1 ) + 2 m = 1 2 M ( 1 ) m m ln m + m = 1 2 M ( 1 ) m ln m \begin{aligned} S_M & = \; \sum_{m=1}^{2M}(-1)^{m-1}\left\{(m+1)\ln\big(\tfrac{m+1}{m}\big) - 1 \right\} \; = \; \sum_{m=1}^{2M}(-1)^{m-1}(m+1)\ln(m+1) + \sum_{m=1}^{2M}(-1)^m(m+1)\ln m \\ & = \; \sum_{m=2}^{2M+1}(-1)^m m \ln m + \sum_{m=1}^{2M}(-1)^m(m+1)\ln m \; = \; -(2M+1)\ln(2M+1) + 2\sum_{m=1}^{2M}(-1)^m m \ln m + \sum_{m=1}^{2M} (-1)^m \ln m \end{aligned} Now m = 1 2 M ( 1 ) m ln m = ln ( 2 × 4 × × 2 M 1 × 3 × × ( 2 M 1 ) ) = ln ( 2 2 M ( M ! ) 2 ( 2 M ! ) ) m = 1 2 M ( 1 ) m m ln m = ln ( 2 2 × 4 4 × × ( 2 M ) 2 M 1 1 × 3 3 × × ( 2 M 1 ) 2 M 1 ) = ln ( 2 2 M ( M + 1 ) P M 4 P 2 M ) \begin{aligned} \sum_{m=1}^{2M} (-1)^m \ln m & = \; \ln\left(\frac{2 \times 4 \times \cdots \times 2M}{1 \times 3 \times \cdots \times (2M-1)}\right) \; = \; \ln\left(\frac{2^{2M}(M!)^2}{(2M!)}\right) \\ \sum_{m=1}^{2M} (-1)^m m \ln m & = \; \ln\left(\frac{2^2 \times 4^4 \times \cdots \times (2M)^{2M}}{1^1 \times 3^3 \times \cdots \times (2M-1)^{2M-1}}\right) \; = \; \ln\left(\frac{2^{2M(M+1)}P_M^4}{P_{2M}}\right) \end{aligned} where P M = m = 1 M m m P_M \; = \; \prod_{m=1}^M m^m Stirling's approximation tells us that 2 2 M ( M ! ) 2 ( 2 M ) ! = π M K M \frac{2^{2M}(M!)^2}{(2M)!} \; = \; \sqrt{\pi M}K_M where lim M K M = 1 \lim_{M \to \infty}K_M = 1 . Moreover P M = M 1 2 M 2 + 1 2 M + 1 12 e 1 4 M 2 Q M P_M \; = \; M^{\frac12M^2 + \frac12M + \frac{1}{12}}e^{-\frac14M^2}Q_M where lim M Q M = A \lim_{M \to \infty}Q_M = A , the Glaisher-Kinkelin constant. Substituting all this in gives lim M S M = lim M ln ( 1 2 7 6 ( 1 + 1 2 M ) 2 M + 1 Q M 8 Q 2 M 2 π K M ) = ln ( A 6 π 2 7 6 e ) \lim_{M \to \infty}S_M \; = \; \lim_{M\to\infty}\ln\left(\frac{1}{2^{\frac{7}{6}}\big(1 + \frac{1}{2M}\big)^{2M+1}} \frac{Q_M^8}{Q_{2M}^2} \sqrt{\pi} K_M\right) \; = \; \ln\left(\frac{A^6\sqrt{\pi}}{2^{\frac76}e}\right) making the answer 1 + 1 + 2 + 7 + 6 + 1 + 6 = 24 1 + 1 + 2 + 7 + 6 + 1 + 6 = \boxed{24} .

Now this is a perfect answer.....

Rohan Shinde - 2 years, 1 month ago

Log in to reply

@Darkrai ~Rayquaza Hey, here's a fun fact........find the value of

0 1 0 1 ( 1 x ) ( 1 + x y ) ( ln x y ) 2 d x d y \displaystyle \int_0^1\int_0^1\frac{\left(1-x\right)}{\left(1+xy\right)\left(\ln xy\right)^2}dxdy

Aaghaz Mahajan - 2 years, 1 month ago

Log in to reply

The answer is on this page

Aaghaz Mahajan - 2 years, 1 month ago

Log in to reply

@Aaghaz Mahajan The substitutions x = e u , y = e v x = e^{-u}\,,\,y = e^{-v} gives 0 1 0 1 1 x ( 1 + x y ) ( ln ( x y ) ) 2 d x d y = 0 0 1 e u ( u + v ) 2 ( 1 + e u + v ) d u d v \int_0^1 \int_0^1 \frac{1-x}{(1+xy)(\ln(xy))^2}\,dx\,dy \; = \; \int_0^\infty \int_0^\infty\frac{1 - e^{-u}}{(u+v)^2(1 + e^{u+v})}\,du\,dv and then the substitution U = u + v U = u+v , V = u V = u gives 0 1 0 1 1 x ( 1 + x y ) ( ln ( x y ) ) 2 d x d y = 0 1 U 2 ( 1 + e U ) 0 U ( 1 e V ) d V d U = 0 e U 1 + U U 2 ( 1 + e U ) d U = n = 1 ( 1 ) n 1 ( n + 1 ) ! 0 x n 1 e x + 1 d x = n = 1 ( 1 ) n 1 n ( n + 1 ) η ( n ) \begin{aligned} \int_0^1 \int_0^1 \frac{1-x}{(1+xy)(\ln(xy))^2}\,dx\,dy & = \; \int_0^\infty \frac{1}{U^2(1+e^U)}\int_0^U (1 - e^{-V})\,dV\,dU \; = \; \int_0^\infty \frac{e^{-U} - 1 + U}{U^2(1+e^U)}\,dU \\ & = \; \sum_{n=1}^\infty \frac{(-1)^{n-1}}{(n+1)!}\int_0^\infty \frac{x^{n-1}}{e^x+1}\,dx \; = \; \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n(n+1)}\eta(n) \end{aligned} so this integral is identical with the sum in the question.

Mark Hennings - 2 years, 1 month ago

Log in to reply

@Mark Hennings Yes sir!!! This is what I did!!! But, I was just surprised to see that even this integral is well known and has a special name!!!

Aaghaz Mahajan - 2 years, 1 month ago

e n = 1 ( 1 ) n 1 η ( n ) n ( n + 1 ) π A 6 2 2 6 e e^{\sum _{n=1}^{\infty } \frac{(-1)^{n-1} \eta (n)}{n (n+1)}} \Rightarrow \frac{\sqrt{\pi } A^6}{2 \sqrt[6]{2} e}

1 + 1 + 2 + 7 + 6 + 1 + 6 24 1 + 1 + 2 + 7 + 6 + 1 + 6 \Rightarrow 24

How did you get this result?

Pi Han Goh - 2 years, 1 month ago

Log in to reply

Try my solution.

Mark Hennings - 2 years, 1 month ago

Log in to reply

Thank you.

A Former Brilliant Member - 2 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...