Inequality Masterpiece

Algebra Level 4

a b + 1 ( a + b ) 2 + b c + 1 ( b + c ) 2 + c a + 1 ( c + a ) 2 \large \frac{ab+1}{(a+b)^2} + \frac{bc+1}{(b+c)^2} + \frac{ca+1}{(c+a)^2}

Positive real numbers a a , b b and c c are such that a 2 + b 2 + c 2 + ( a + b + c ) 2 4 a^2 + b^2 + c^2 + (a+b+c)^2 \le 4 . Find the minimum value of the expression above.


Question from USAMO 2011 (slightly modified).

Bonus: Prove it and post your solution.


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Phuoc Tran
Mar 7, 2017

We have a 2 + b 2 + c 2 + ( a + b + c ) 2 4 2 a 2 + b 2 + c 2 + a b + b c + c a a^{2}+b^{2}+c^{2}+(a+b+c)^{2}\leq4 \Leftrightarrow 2\geq a^{2}+b^{2}+c^{2}+ab+bc+ca (1)

We set P = a b + 1 ( a + b ) 2 + b c + 1 ( b + c ) 2 + c a + 1 ( c + a ) 2 2 P = 2 a b + 2 ( a + b ) 2 + 2 b c + 2 ( b + c ) 2 + 2 c a + 2 ( c + a ) 2 P=\frac{ab+1}{(a+b)^{2}}+\frac{bc+1}{(b+c)^{2}}+\frac{ca+1}{(c+a)^{2}} \Leftrightarrow2P=\frac{2ab+2}{(a+b)^{2}}+\frac{2bc+2}{(b+c)^{2}}+\frac{2ca+2}{(c+a)^{2}} (2)

From (1) and (2) we have 2 P 2 a b + ( a 2 + b 2 + c 2 + a b + b c + c a ) ( a + b ) 2 + 2 b c + ( a 2 + b 2 + c 2 + a b + b c + c a ) ( b + c ) 2 + 2 c a + ( a 2 + b 2 + c 2 + a b + b c + c a ) ( c + a ) 2 2P\geq\frac{2ab+(a^{2}+b^{2}+c^{2}+ab+bc+ca)}{(a+b)^{2}}+\frac{2bc+(a^{2}+b^{2}+c^{2}+ab+bc+ca)}{(b+c)^{2}}+\frac{2ca+(a^{2}+b^{2}+c^{2}+ab+bc+ca)}{(c+a)^{2}} 2 P 3 + ( b + c ) ( c + a ) ( a + b ) 2 + ( c + a ) ( a + b ) ( b + c ) 2 + ( a + b ) ( b + c ) ( c + a ) 2 3 + 3 = 6 ( A M G M ) \Leftrightarrow 2P\geq3+\frac{(b+c)(c+a)}{(a+b)^{2}}+\frac{(c+a)(a+b)}{(b+c)^{2}}+\frac{(a+b)(b+c)}{(c+a)^{2}}\geq3+3=6 (AM-GM) 2 P 6 \Leftrightarrow 2P\geq6
P 3 \Leftrightarrow P\geq3 .

wow amazing

Tí Anh - 4 years, 3 months ago
Ashutosh Kumar
Apr 19, 2017

Also the proofs of the inequality used are given below: https://brilliant.org/wiki/nesbitts-inequality/

Proof for the inequality used at the starting of the problem:

@Ashutosh Kumar Nice one !

Ayon Ghosh - 4 years, 1 month ago

Log in to reply

@Ayon Ghosh Thanx!!

Ashutosh Kumar - 4 years, 1 month ago

@Ankit Kumar Jain

Ashutosh Kumar - 4 years, 1 month ago

That was great @Ashutosh Kumar ..!! But could you please elaborate a bit more on the proof of the starting inequality , I couldn't follow that proof.

Ankit Kumar Jain - 4 years, 1 month ago

Log in to reply

The proof of this inequality is quite tough and it was the most simple one but you can find more solution on the internet by searching IRAN 1996 inequality.

Ashutosh Kumar - 4 years, 1 month ago

Log in to reply

That seems to be extremely tough... AIIT Ashutosh ...Mast inequality padha hai..!

Ankit Kumar Jain - 4 years, 1 month ago

Log in to reply

@Ankit Kumar Jain haan haan!!!! Tum toh aaj kal aisa aisa banata hai humse banta hi nhi hai

Ashutosh Kumar - 4 years, 1 month ago

Log in to reply

@Ashutosh Kumar Hum bana hi nahi rahe hai..mera streak dekh 0 hai.

Ankit Kumar Jain - 4 years, 1 month ago

Log in to reply

@Ankit Kumar Jain jaa n jaa!!!

Ashutosh Kumar - 4 years, 1 month ago

Log in to reply

@Ashutosh Kumar Jaa tum bhaag...

Ankit Kumar Jain - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...