RMO Practice question 4

Algebra Level 4

( 2 λ 3 μ ) 2 + ( 2 4 λ + 3 μ ) 2 + ( 2 λ 3 ) 2 + 403 1 2 η \sqrt{(2\lambda-3\mu)^{2}+ (2-4\lambda+3\mu)^{2}+(2\lambda-3)^{2}+4031^{2}} \geq \eta

Find the maximum integer value of η \eta , such that for all real numbers λ , μ \lambda,\mu , the inequality above is fulfilled.


The answer is 4031.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

We note that:

( 2 λ 3 μ ) 2 + ( 2 4 λ + 3 μ ) 2 + ( 2 λ 3 ) 2 + 403 1 2 > 0 + 403 1 2 > 4031 \begin{aligned} \sqrt{(2\lambda-3\mu)^2+(2-4\lambda+3\mu)^2 + (2\lambda-3)^2 +4031^2} & > \sqrt{0 + 4031^2} \\ & > 4031 \end{aligned}

Using Cauchy-Schwartz inequality: [ ( 2 λ 3 μ ) + ( 2 4 λ + 3 μ ) + ( 2 λ 3 ) ] 2 3 [ ( 2 λ 3 μ ) 2 + ( 2 4 λ + 3 μ ) 2 + ( 2 λ 3 ) 2 ] ( 1 ) 2 3 [ ( 2 λ 3 μ ) 2 + ( 2 4 λ + 3 μ ) 2 + ( 2 λ 3 ) 2 ] ( 2 λ 3 μ ) 2 + ( 2 4 λ + 3 μ ) 2 + ( 2 λ 3 ) 2 1 3 \small [(2\lambda-3\mu)+(2-4\lambda+3\mu) + (2\lambda-3)]^2 \le 3[(2\lambda-3\mu)^2+(2-4\lambda+3\mu)^2 + (2\lambda-3)^2] \\ \Rightarrow (-1)^2 \le 3[(2\lambda-3\mu)^2+(2-4\lambda+3\mu)^2 + (2\lambda-3)^2] \\ (2\lambda-3\mu)^2+(2-4\lambda+3\mu)^2 + (2\lambda-3)^2 \ge \frac{1}{3}

Equality happens when λ = 4 3 \lambda = \frac{4}{3} and μ = 1 \mu = 1 .

Therefore,

( 2 λ 3 μ ) 2 + ( 2 4 λ + 3 μ ) 2 + ( 2 λ 3 ) 2 + 403 1 2 1 3 + 403 1 2 \sqrt{(2\lambda-3\mu)^2+(2-4\lambda+3\mu)^2 + (2\lambda-3)^2 +4031^2} \ge \sqrt{\frac{1}{3} +4031^2}

and the maximum integer value of η \eta is 4031 \boxed{4031} .

Where did the /4 come from? Shouldn't the answer be 4030?

Calvin Lin Staff - 5 years, 9 months ago

Log in to reply

It is RMS-AM inequality.

Chew-Seong Cheong - 5 years, 9 months ago

Log in to reply

Ah sorry, I didn't notice that you multiplied by 2 later.

However, note that you did not check whether equality can hold. In fact, it cannot, since there is no solution to ( 2 λ 3 μ ) = ( 2 4 λ + 3 μ ) = ( 2 λ 3 ) = 4031 (2\lambda-3\mu)=(2-4\lambda+3\mu) = (2\lambda-3) =4031 .

In particular, notice that the expression should be at least as large as 403 1 2 = 4031 \sqrt{ 4031^2} = 4031 .

When dealing with inequalities, it is extremely important to verify that the equality case can be achieved. Otherwise, you just have a lower bound, and not the greatest lower bound.

Calvin Lin Staff - 5 years, 9 months ago

Log in to reply

@Calvin Lin Yes, the minimum value of 403 1 2 \sqrt{4031^2} is obvious.

Chew-Seong Cheong - 5 years, 9 months ago

Sir, is this not correct-

By titu's lemma , we have

( 2 λ 3 μ ) 2 + ( 2 4 λ + 3 μ ) 2 + ( 2 λ 3 ) 2 + 4031 2 ( 2 λ 3 μ + 2 4 λ + 3 μ + 2 λ 3 + 4031 ) 2 4 \large\ { (2\lambda - 3\mu ) }^{ 2 } + { (2 - 4\lambda + 3\mu ) }^{ 2 } + { (2\lambda - 3 })^{ 2 } + { 4031 }^{ 2 } \ge \frac { { (2\lambda - 3\mu + 2 - 4\lambda + 3\mu + 2\lambda - 3{ + 4031) } }^{ 2 } }{ 4 }

and the R.H.S is equivalent to

( 4031 1 ) 2 4 \large\ \frac { { ({ 4031 - 1) } }^{ 2 } }{ 4 } .

or equivalent to,

4030 × 4030 4 \large\ \frac { 4030\times 4030 }{ 4 } . . . ( 1 ) ...(1)

Then returning back to the given question we have (from ( 1 ) (1) )

( 2 λ 3 μ ) 2 + ( 2 4 λ + 3 μ ) 2 + ( 2 λ 3 ) 2 + 4031 2 ( 2 λ 3 μ + 2 4 λ + 3 μ + 2 λ 3 + 4031 ) 2 4 \large\ \sqrt { { (2\lambda -3\mu ) }^{ 2 }+{ (2-4\lambda +3\mu ) }^{ 2 }+{ (2\lambda -3 })^{ 2 }+{ 4031 }^{ 2 } } \ge \sqrt { \frac { { (2\lambda -3\mu +2-4\lambda +3\mu +2\lambda -3{ +4031) } }^{ 2 } }{ 4 } }

which is equal to 4030 2 \large\ \frac { 4030 }{ 2 } or 2015 2015 .

This shows that η = 2015 \eta =\boxed{2015} .

Please tell me , where i am wrong.

Priyanshu Mishra - 5 years, 6 months ago

"Mini Sketch of Proof."- Remove the square root in LHS and use partial derivates...

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...