Rollin' Stones

Geometry Level 5

Find the area of the hatched region, if the radii of the two circles in the figure above are 1 1 and 162 + 27 162 + 27 5 5 5 \sqrt[5]{162+27\sqrt[5]{162+27\sqrt[5]{\cdots}}} .

If your answer is in the form of a b c 2 b π a\sqrt{b}-\frac{c}{2b}\pi for some positive pairwise coprime integers a , b , c a, b, c . Find a + b + c a+b+c .


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rishabh Jain
Jan 29, 2016

Let x= 162 + 27 162 + 27 5 5 5 \sqrt[5]{162+27\sqrt[5]{162+27\sqrt[5]{\cdots}}} . x 5 3 3 x 3 4 × 2 = 0 \Rightarrow x^5-3^3 x -3^4 \times 2=0 x ( i.e radius of bigger circle ) = 3 \Rightarrow x(\text{i.e radius of bigger circle})=3 R e q u i r e d A r e a ( A ) = a r ( t r a p e z i u m A C D B ) ( a r ( s e c t o r B E D ) + a r ( s e c t o r A E C ) ) \color{#D61F06}{Required~Area(A)}\\ =ar(\color{#3D99F6}{trapeziumACDB})-(ar\color{#3D99F6}{(sectorBED)}+ar\color{#3D99F6}{(sectorAEC)}) a r ( t r a p e z i u m A C D B ) = 1 2 ( 2 3 ) ( 3 + 1 ) ar(\color{#3D99F6}{trapeziumACDB})=\frac{1}{2}(2\sqrt3)(3+1) a r ( s e c t o r B E D ) = π 3 × 9 2 ar\color{#3D99F6}{(sectorBED)}=\frac{\frac{\pi}{3}\times 9}{2} a r ( s e c t o r A E C ) = 2 π 3 × 1 2 ar\color{#3D99F6}{(sectorAEC)}=\frac{\frac{2\pi}{3}\times 1}{2} A = 4 3 ( 3 π 2 + π 3 ) \Rightarrow A=4\sqrt3-(\frac{3\pi}{2}+\frac{\pi}{3}) = 4 3 11 π 2 × 3 =4\sqrt 3-\dfrac{11\pi}{2\times 3} Hence, a=4, b=3 and c=11 4 + 3 + 11 = 18 \Large 4+3+11=\boxed{\color{darkviolet}{\boxed{18}}}

same way. nice solution man.

Shreyash Rai - 5 years, 4 months ago

Log in to reply

Thanks!! \large \color{#D61F06}{\text{Thanks!!}}

Rishabh Jain - 5 years, 4 months ago

A nice solution with a beautiful figure (+1)!

Samarth Agarwal - 5 years, 4 months ago

Log in to reply

Thanks!! \large \color{darkviolet}{\text{Thanks!!}}

Rishabh Jain - 5 years, 4 months ago
Akshay Yadav
Jan 29, 2016

First we need to find the radius other than 1 1 ,

Let,

x = 162 + 27 162 + 27 5 5 5 x = \sqrt[5]{162+27\sqrt[5]{162+27\sqrt[5]{\cdots}}}

x = 162 + 27 x 5 x = \sqrt[5]{162+27x}

x 5 27 x 162 = 0 x^{5} -27x -162= 0

Notice that x = 3 x = 3 satisfy the above equation (I figured it out by mere hit-n-trial),

Hence the two radii are 1 1 and 3 3 .

Clearly,

B C D = 60 ° \angle BCD = 60° and A D C = 120 ° \angle ADC =120° .

a r e a ( A B C D ) = ( 1 + 3 ) 2 3 2 a r e a ( A B C D ) = 4 3 area(ABCD) = \frac{(1+3)2\sqrt{3}}{2} \\ area(ABCD) = 4\sqrt{3}

Now,

R e q . a r e a = a r e a Req.area = area o f of A B C D a r e a ABCD- area o f of t w o two s e c t o r s sectors

R e q . a r e a = 4 3 1 6 . π ( 3 ) 2 1 3 . π ( 1 ) 2 Req.area = 4√3-\frac{1}{6}.\pi(3)^{2}-\frac{1}{3}.\pi(1)^{2}

R e q . a r e a = 4 3 11 π 6 Req.area = 4√3-\frac{11\pi}{6}

Hey. There's an identity that says ( 1 a ) x n + a x n 1 ( 1 a ) x n + a x n 1 n n n = x \sqrt[n]{(1-a)x^n+ax^{n-1}\sqrt[n]{(1-a)x^n+ax^{n-1}\sqrt[n]{\cdots}}}=x and in the case of 162 + 27 162 + 27 5 5 5 = 3 \sqrt[5]{162+27\sqrt[5]{162+27\sqrt[5]{\cdots}}}=3 n = 5 , a = 1 3 , x = 3 n=5, a=\frac{1}{3}, x=3

Digvijay Singh - 5 years, 4 months ago

Log in to reply

Typo. Not 126 but 162.

Niranjan Khanderia - 5 years, 4 months ago

Log in to reply

I'm sorry. Thanx for pointing that out. Feelin stupid..

Digvijay Singh - 5 years, 4 months ago

And i failed to indentified that x = 3 x=3

need more practice lol

Jason Chrysoprase - 5 years, 4 months ago

@Digvijay Singh this question is highly overrated according to me! What do you think?

Akshay Yadav - 5 years, 4 months ago

Log in to reply

I Know right? Actually, most of all my questions are overrated. Nothing I can do about that.

And this very question is similar to a question in my IGCSE textbook.. Well in the textbook they just ask for the length AB.

Digvijay Singh - 5 years, 4 months ago

Hey which class do you study Digvijay Singh?

Akhash Raja Raam - 5 years, 4 months ago

Log in to reply

I'm completing my IGCSE from Cambridge actually... You can call it the '10th'...

Digvijay Singh - 5 years, 4 months ago

Log in to reply

@Digvijay Singh I know that IGCSE is a very good system but I did not expect it to be this tough! So, you are studying in Cambridge or elsewhere but the syllabus is IGCSE?

Akhash Raja Raam - 5 years, 3 months ago

R = 162 + 27 162 + 27 . . . 5 5 5 ( R 3 ) 5 1 3 R 3 2 1 3 = 0 The equation suggests that R= 3 and indeed, R the radius of big circle is 3. The figure shows the circle BF,r=1, center A, the circle BE,R=3, center C, tangent at B. The straight line is tangent at F and E. Line joining centers, AC = 4. D r a w A D E F , D o n C E . C E E F = R = 3 , A F E F = r = 1 = D E . C D = 2. Δ A C D r t . e d a t D , 2 C D = A C , t h e h y p o t o n u s . = C A D = 3 0 o . A D = 4 C o s C A D = 2 3 . A l s o B A F = 12 0 o , B C E = 6 0 o . G r e e n a r e a F B E = ( A r e a T r a p e z i u m F B C E ) ( S e c t o r s 12 0 o o f r = 1 a n d 6 0 o o f r = 3 ) = A D ( 1 2 C D + D E ) π ( 1 2 120 360 + 3 2 60 360 ) = 4 3 11 6 π = 4 3 11 2 3 π R e q u i r e d a + b + c = 18. R=\sqrt[5]{162+27\sqrt[5]{162+27\sqrt[5]{...}}} ~~~~ \implies~(\dfrac R 3)^5 -\frac 1 3 *\dfrac R 3 - 2*\frac 1 3 =0\\ \text{The equation suggests that R= 3 and indeed, R the radius of big circle is 3.}\\ \text{The figure shows the circle BF,r=1, center A, the circle BE,R=3, center C, tangent at B.} \\ \text{The straight line is tangent at F and E. Line joining centers, AC = 4.}\\ Draw ~ AD | | EF, ~ D ~ on ~ CE . ~ CE\bot EF=R=3, ~~ AF\bot EF=r=1=DE. ~~\therefore ~CD=2.\\ \therefore ~\Delta~ACD ~rt. ~ \angle ed ~at ~D, 2CD=AC, ~ the ~ hypotonus. ~~\therefore ~ \angle =CAD=30^o. \\ AD=4*CosCAD=2*\sqrt3. ~~Also ~ \angle BAF=120^o, ~~\angle BCE=60^o.\\ Green~ area~FBE =(Area ~ Trapezium ~ FBCE) - (Sectors ~ 120^o ~ of ~ r=1 ~and~ 60^o ~ of ~ r=3)\\ = AD*(\frac 1 2 CD+ DE) - \pi*(1^2*\frac {120}{360} + 3^2*\frac {60}{360})\\ =4*\sqrt3-\frac{11}6*\pi=4*\sqrt3-\frac{11}{2*3}*\pi \\ Required ~ a+b+c= ~~\boxed{\color{#D61F06}{18}.}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...