Root the middle Binomial

Calculus Level 3

lim n ( 2 n n ) n \lim_{n \rightarrow \infty} \sqrt[n] { 2n \choose n }

e e 4 4 0 0 π \pi

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Michael Mendrin
Oct 3, 2015

Using the good old Sterling's Approximation gets you the answer

( 2 π 2 n ( 2 n e ) 2 n 2 π n ( n e ) n 2 π n ( n e ) n ) 1 n = 4 1 ( π n ) 1 n { \left( \dfrac { \sqrt { 2\pi 2n } { \left( \frac { 2n }{ e } \right) }^{ 2n } }{ \sqrt { 2\pi n } { \left( \frac { n }{ e } \right) }^{ n }\sqrt { 2\pi n } { \left( \frac { n }{ e } \right) }^{ n } } \right) }^{ \frac { 1 }{ n } }=4\cdot \frac { 1 }{ { \left( \sqrt { \pi n } \right) }^{ \frac { 1 }{ n } } }

Of course, that's not surprising.

How can we approach this otherwise?

Calvin Lin Staff - 5 years, 8 months ago

Log in to reply

I kind of give up. I keep coming back to the Wallis infinite product as an alternate way of coming up with this result. Here’s how it’s done if we go that way

( 2 n ) ! n ! n ! = \dfrac { \left( 2n \right) ! }{ n!n! } =

2 n ( 2 n 1 ) ! ! n ! = \dfrac { { 2 }^{ n }\left( 2n-1 \right) !! }{ n! } =

4 n 1 2 n + 1 k = 1 n ( 2 k 1 2 k 2 k + 1 2 k ) { 4 }^{ n }\sqrt { \dfrac { 1 }{ 2n+1 }\displaystyle \prod _{ k=1 }^{ n }{ \left( \dfrac { 2k-1 }{ 2k } \cdot \dfrac { 2k+1 }{ 2k } \right) } }

which of course is a variation of the Wallis infinite product, with the limit value of

4 n 1 n π { 4 }^{ n }\dfrac { 1 }{ \sqrt { n\pi } }

and the rest follows from this. I’m not sure why I can’t seem to find a more obvious way to prove this, without invoking either Stirling’s approximation or the Wallis infinite product.

Michael Mendrin - 5 years, 8 months ago

Log in to reply

...oh, wait, now I feel kind of stupid. Let's expand ( 1 + 1 ) 2 n { \left( 1+1 \right) }^{ 2n } to display all the coefficients. The center coefficient, out of 2 n + 1 2n+1 terms, is the largest. So we can infer that

2 2 n > ( 2 n ) ! n ! n ! > 2 2 n 2 n + 1 { 2 }^{ 2n } > \dfrac { \left( 2n \right) ! }{ n!n! } > \dfrac { { 2 }^{ 2n } }{ 2n+1 }

I think we can deduce the limit value from this. Let me think on it. ...Yeah, just take the n t h nth root of all terms, and we're done.

Michael Mendrin - 5 years, 8 months ago

Log in to reply

@Michael Mendrin Yup, that's the approach using less machinery.

Calvin Lin Staff - 5 years, 8 months ago

Log in to reply

@Calvin Lin It's the short, "elegant" proofs that can take the longest time to come up with. This was somehow a stranger problem than I thought it'd be.

Michael Mendrin - 5 years, 8 months ago

Log in to reply

@Michael Mendrin l'm just here to see how someone got this. I used an android app called Symbolab. LOL.

E Tyson Ewing III - 5 years, 7 months ago
James Wilson
Nov 15, 2017

After taking the natural logarithm, I was able to put it into the form of a Riemann integral, and take the antiderivative to get the answer. Let L L be the desired limit. Then ln L = lim n 1 n ln ( 2 n ) ! n ! n ! = lim n 1 n ln 2 n ( 2 n 1 ) . . . ( n + 1 ) n ( n 1 ) . . . ( 1 ) \ln{L}=\lim_{n\rightarrow \infty} \frac{1}{n}\ln{\frac{(2n)!}{n!n!}}=\lim_{n\rightarrow \infty} \frac{1}{n} \ln{\frac{2n(2n-1)...(n+1)}{n(n-1)...(1)}} = lim n 1 n k = 0 ln 2 n k n k = k = 0 ln 2 k / n 1 k / n = 0 1 ln 2 x 1 x d x = 0 1 ln x + 1 x d x =\lim_{n\rightarrow \infty} \frac{1}{n} \sum_{k=0}^\infty \ln{\frac{2n-k}{n-k}}=\sum_{k=0}^\infty \ln{\frac{2-k/n}{1-k/n}}=\int_0^1 \ln{\frac{2-x}{1-x}}dx= \int_0^1 \ln{\frac{x+1}{x}}dx = 0 1 ( ln ( x + 1 ) ln x ) d x = [ ( x + 1 ) ln ( x + 1 ) x ln x ] 0 1 = 2 ln 2 0 0 + lim x 0 + x ln x = 2 ln 2 =\int_0^1 (\ln{(x+1)}-\ln{x})dx =\Big[(x+1)\ln{(x+1)}-x\ln{x}\Big]_0^1=2\ln{2}-0-0+\lim_{x\rightarrow 0+}x\ln{x}=2\ln{2} . Therefore, L = exp ( 2 ln 2 ) = 4 L=\exp(2\ln{2})=4 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...