Number of roots

Algebra Level 4

( x a ) n = ( x a ) n r , n r \large{(x-a)^n=(x-a)^{n-r}, n\geqslant r}

Given that, a a is a constant, n & r n\, \&\, r are positive integers. Then, how many distinct roots of x x (incl. complex roots) does the above equation have?

n + r n+r n r + 1 n-r+1 r r n r n-r r + 1 r+1 n n n r 1 n-r-1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Md Omur Faruque
Sep 5, 2015

Let, y = x a y=x-a . Then, y n = y n r y^n=y^{n-r} y n r + r y n r = 0 \Rightarrow y^{n-r+r} - y^{n-r} =0 y n r y r y n r = 0 \Rightarrow y^{n-r} \cdot y^r-y^{n-r} =0 y n r ( y r 1 ) = 0 \Rightarrow y^{n-r} \cdot (y^r-1)=0 y n r = 0 1 s t p a r t or, y r = 1 2 n d p a r t \Rightarrow \underbrace {y^{n-r} =0}_{1^{st}\,part}\;\,\:\text{or,}\,\;\: \underbrace {y^r=1}_{2^{nd}\,part}

From 1 s t 1^{st} part we get, y n r = 0 y = 0 y^{n-r}=0\Rightarrow y=0 x a = 0 \Rightarrow x-a=0 x = a 1 root \Rightarrow \underbrace {x=a}_{1 \text{ root}}

As, r t h r^{th} root of unity will have r r distinct roots. From 2 n d 2^{nd} part we get, y r = 1 y^r=1 y = x a = ω 1 , ω 2 , ω 3 , ω r [Here, ω represents the roots of unity.] \Rightarrow y=x-a=\omega_1,\omega_2,\omega_3,\dots \omega_r\, \color{teal} {\text {[Here, } \omega \text{ represents the roots of unity.]}} x = ( a + ω 1 ) , ( a + ω 2 ) , ( a + ω 3 ) , , ( a + ω r ) r roots \Rightarrow x= \underbrace {(a+\omega_1) ,(a+\omega_2) ,(a+\omega_3) ,\dots, (a+\omega_r)}_{r\, \text{roots}}

Thus, total number of distinct roots will be 1 + r \color{#0C6AC7} {\boxed {1+r}} .

Could you please add how you conclude the last line ?

  • From First part we get y^{r} = 1

  • From Second Part we get : x= (a+W1), ............... ........ , (a + Wr)

  • Then How We Will get 1 + r

Syed Baqir - 5 years, 9 months ago

Log in to reply

Because from 1 s t 1^{st} part we get 1 1 root of x x ( x = a ) (x=a) . And from 2 n d 2^{nd} part we get r r roots.

Thus, total number of roots = 1 + r =1+r .

And, I've edited the solution for easier understanding.

MD Omur Faruque - 5 years, 9 months ago

Log in to reply

Thanks, Upvoted

Syed Baqir - 5 years, 9 months ago

Log in to reply

@Syed Baqir You are welcome.

MD Omur Faruque - 5 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...