Don't think about a + b + c + d a+b+c+d as a known equation!

Algebra Level 3

{ a + b + c d = 1 a + b c + d = 2 a b + c + d = 3 a + b + c + d = 4 \begin{cases} a+b+c-d = 1 \\ a+b-c+d = 2 \\ a-b+c+d = 3 \\ -a+b+c+d = 4 \end{cases}

If the system of equations above holds true for the positive real number of a , b , c , d a, b, c, d , then find the value of the expression below.

8 a 2 + 9 b 2 + 12 c 2 + 13 d 2 \begin{aligned} 8a^2 + 9b^2 + 12c^2 + 13d^2 \end{aligned}


Try another problem on my set Let's Practice


The answer is 90.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Fidel Simanjuntak
Jan 23, 2017

{ a + b + c d = 1 . . . ( 1 ) a + b c + d = 2 . . . ( 2 ) a b + c + d = 3 . . . ( 3 ) a + b + c + d = 4 . . . ( 4 ) \begin{cases} a+b+c-d = 1 \space ...(1) \\ a+b-c+d =2 \space ...(2) \\ a-b+c+d = 3 \space ...(3) \\ -a+b+c+d = 4 \space ...(4) \end{cases}

( 1 ) + ( 2 ) + ( 3 ) + ( 4 ) 2 ( a + b + c + d ) = 10 a + b + c + d = 5 . . . ( 5 ) (1) + (2) + (3) + (4) \Rightarrow \space 2(a+b+c+d) = 10 \Rightarrow \space a+b+c+d = 5 \space ...(5)

( 5 ) ( 1 ) (5) - (1) gives d = 2 d= 2 .

( 5 ) ( 2 ) (5) - (2) gives c = 3 2 c = \frac{3}{2} .

( 5 ) ( 3 ) (5) - (3) gives b = 1 b = 1 .

( 5 ) ( 4 ) (5) - (4) gives a = 1 2 a = \frac{1}{2} .

Then, we have a ² = 1 4 ; b ² = 1 ; c ² = 9 4 ; d ² = 4 a² = \frac{1}{4}; \space b² = 1; \space c² = \frac{9}{4}; \space d² = 4 .

Hence, we have 8 a ² + 9 b ² + 12 c ² + 13 d ² = 2 + 9 + 27 + 52 = 90 8a² + 9b² + 12c² + 13d² = 2 + 9 + 27 + 52 = \boxed{90} .

Log in to reply

Oh sorry. I didnt realize it.

Fidel Simanjuntak - 4 years, 4 months ago

Log in to reply

No worries. Your question is good too!

Pi Han Goh - 4 years, 4 months ago

Log in to reply

@Pi Han Goh You too, because they are similar XD...

Fidel Simanjuntak - 4 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...