Sequence involving trig

Geometry Level 4

Sequence { a n } \{a_n\} is such that n N + \forall n \in \mathbb N^+ , a n ( 0 , π 2 ) a_n \in \left(0,\dfrac{\pi}{2}\right) , a 1 = π 3 a_1=\dfrac{\pi}{3} , f ( a n + 1 ) = f ( a n ) f(a_{n+1})=\sqrt{f'(a_n)} , where f ( x ) = tan x f(x)=\tan x .

What is the minimum positive integer k k such that i = 1 k sin a i < 1 10 \displaystyle \prod^{k}_{i=1} \sin a_{i}<\dfrac{1}{10} ?


The answer is 298.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
May 12, 2020

Given that

f ( a n + 1 ) = f ( a n ) tan a n + 1 = sec a n tan 2 a n + 1 = sec 2 a n = tan 2 a n + 1 tan 2 a 2 = tan 2 a 1 + 1 = tan 2 π 3 + 1 = 4 tan 2 a 3 = tan 2 a 2 + 1 = 5 tan 2 a 4 = 6 tan 2 a n = n + 2 tan a n = n + 2 sin a n = n + 2 n + 3 \begin{aligned} f(a_{n+1}) & = \sqrt{f'(a_n)} \\ \tan a_{n+1} & = \sec a_n \\ \tan^2 a_{n+1} & = \sec^2 a_n = \tan^2 a_n + 1 \\ \implies \tan^2 a_2 & = \tan^2 a_1 + 1 = \tan^2 \frac \pi 3 + 1 = 4 \\ \tan^2 a_3 & = \tan^2 a_2 + 1 = 5 \\ \tan^2 a_4 & = 6 \\ \implies \tan^2 a_n & = n + 2 \\ \tan a_n & = \sqrt{n+2} \\ \implies \sin a_n & = \sqrt{\frac {n+2}{n+3}} \end{aligned}

Then we have:

i = 1 k sin a i = i = 1 k i + 2 i + 3 = 3 k + 3 i = 1 k sin a i < 1 10 3 k + 3 < 1 10 k > 297 \begin{aligned} \prod_{i=1}^k \sin a_i & = \prod_{i=1}^k \sqrt{\frac {i+2}{i+3}} = \sqrt{\frac 3{k+3}} \\ \prod_{i=1}^k \sin a_i & < \frac 1{10} \\ \implies \sqrt{\frac 3{k+3}} & < \frac 1{10} \\ k & > 297 \end{aligned}

Therefore the minimum k k is 298 \boxed{298} .

Really great solution.

Matthew Feig - 1 year ago

Log in to reply

Thanks, I have amended it. Glad that you like the solution,

Chew-Seong Cheong - 1 year ago

It's easy to derive from tan ( a n + 1 ) = sec ( a n ) , a 1 = π 3 \tan (a_{n+1})=\sec (a_n), a_1=\dfrac{π}{3} that

sin ( a k ) = k + 2 k + 3 \sin (a_k)=\sqrt {\dfrac{k+2}{k+3}} ,

and the given product reduces to 3 k + 3 \sqrt {\dfrac{3}{k+3}} . So

3 k + 3 < 1 10 k > 297 k m i n = 298 \sqrt {\dfrac{3}{k+3}}<\dfrac{1}{10}\implies k>297\implies k_{min}=\boxed {298} .

Any idea on how the formula of sin(ak) is derived?

Alice Smith - 1 year, 1 month ago

Log in to reply

I just have seen your question. Before I could respond, Chew-Seong had answered it. :)

A Former Brilliant Member - 1 year, 1 month ago

Log in to reply

Yeah, that's one way to derive it:)

Alice Smith - 1 year, 1 month ago

Log in to reply

@Alice Smith We will use mathematical induction. We see that tan ( a 1 ) = 3 , tan ( a 2 ) = 4 , tan ( a 3 ) = 5 \tan (a_1)=\sqrt 3,\tan (a_2)=\sqrt 4,\tan (a_3)=\sqrt 5 . Let this holds true for a k : tan ( a k ) = k + 2 a_k: \tan (a_k)=\sqrt {k+2} . Then tan ( a k + 1 ) = sec ( a k ) = 1 + tan 2 ( a k ) = 1 + k + 2 = k + 3 \tan (a_{k+1})=\sec (a_k)=\sqrt {1+\tan^2 (a_k)}=\sqrt {1+k+2}=\sqrt {k+3} .

Therefore the statement hols true for a k + 1 a_{k+1} also. So sin ( a k ) = tan ( a k ) 1 + tan 2 ( a k ) = k + 2 k + 3 \sin (a_k)=\dfrac{\tan (a_k)}{\sqrt {1+\tan^2 (a_k)}}=\sqrt {\dfrac{k+2}{k+3}}

A Former Brilliant Member - 1 year, 1 month ago

Log in to reply

@A Former Brilliant Member OK, good approach!

Alice Smith - 1 year, 1 month ago
Lingga Musroji
May 26, 2020

Let b n = tan 2 a n b_n=\tan^2{a_n} , then

b 1 = tan 2 π 3 = 3 tan 2 a n + 1 = tan 2 a n + 1 b n + 1 = b n + 1 b_1=\tan^2{\frac{\pi}{3}}=3\\\tan^2{a_{n+1}}=\tan^2{a_n}+1\\b_{n+1}=b_{n}+1

Using arithmetic progression, then b n = n + 2 tan 2 a n = b n = n + 2 sin a n = 1 cos 2 a n = 1 1 sec 2 a n = 1 1 1 + t a n 2 a n = 1 1 1 + n + 2 = n + 2 n + 3 b_n=n+2\\\tan^2{a_n}=b_n=n+2\\\sin{a_n}=\sqrt{1-\cos^2{a_n}}\\=\sqrt{1-\frac{1}{\sec^2{a_n}}}\\=\sqrt{1-\frac{1}{1+tan^2{a_n}}}\\=\sqrt{1-\frac{1}{1+n+2}}\\=\sqrt{\frac{n+2}{n+3}}

n = 1 k sin a n = n = 1 k n + 2 n + 3 = 3 4 4 5 5 6 \hdots k + 2 k + 3 = 3 k + 3 3 k + 3 < 1 10 k > 297 \prod_{n=1}^k\sin{a_n}=\prod_{n=1}^k\sqrt{\frac{n+2}{n+3}}\\=\sqrt{\frac34}\sqrt{\frac45}\sqrt{\frac56}\hdots\sqrt{\frac{k+2}{k+3}}\\=\sqrt{\frac{3}{k+3}}\\\\\sqrt{\frac{3}{k+3}}<\frac1{10}\\k>297

Hence, the minimum k is 298

sorry, i will edit it right now

Lingga Musroji - 1 year ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...