n = 1 ∑ 5 0 [ ( n 3 + 3 n 2 + 5 n + 2 ) × ( n + 1 ) ! ]
If the summation above equals to S , find the value of 5 2 ! S + 2 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
how you thought?
Log in to reply
We have (n+1)!*(cubic expression.) So we can make it a (n+1+4)! to simplify the expression.
Shortest way, had to think for long :)
Let the summation be denoted by S .
S = n = 1 ∑ 5 0 [ ( n 3 + 3 n 2 + 5 n + 2 ) ( n + 1 ) ! ]
⇒ S = n = 1 ∑ 5 0 [ ( ( n + 2 ) ( n 2 + n + 3 ) − 4 ) ( n + 1 ) ! ]
⇒ S = n = 1 ∑ 5 0 [ ( n + 2 ) ! ( n 2 + n + 3 ) − 4 ( n + 1 ) ! ]
⇒ S = n = 1 ∑ 5 0 [ ( n + 2 ) ! ( ( n + 3 ) ( n − 2 ) + 9 ) − 4 ( n + 1 ) ! ]
⇒ S = n = 1 ∑ 5 0 [ ( n + 3 ) ! ( n − 2 ) + 9 ( n + 2 ) ! − 4 ( n + 1 ) ! ]
⇒ S = n = 1 ∑ 5 0 [ ( n + 3 ) ! ( n + 4 − 6 ) + 9 ( n + 2 ) ! − 4 ( n + 1 ) ! ]
⇒ S = n = 1 ∑ 5 0 [ ( n + 4 ) ! − 6 ( n + 3 ) ! + 9 ( n + 2 ) ! − 4 ( n + 1 ) ! ]
⇒ S = n = 1 ∑ 5 0 [ ( n + 4 ) ! − ( n + 3 ) ! ] − 5 n = 1 ∑ 5 0 [ ( n + 3 ) ! − ( n + 2 ) ! ] + 4 n = 1 ∑ 5 0 [ ( n + 2 ) ! − ( n + 1 ) ! ]
There we have it : A Telescopic Series
S = ( 5 ! − 4 ! + 6 ! − 5 ! + … + 5 4 ! − 5 3 ! ) − 5 ( 4 ! − 3 ! + 5 ! − 4 ! + … + 5 3 ! − 5 2 ! ) + 4 ( 3 ! − 2 ! + 4 ! − 3 ! + … + 5 2 ! − 5 1 ! )
S = 5 4 ! − 4 ! − 5 ( 5 3 ! − 3 ! ) + 4 ( 5 2 ! − 2 ! )
⇒ S = 5 4 ! − 5 ( 5 3 ! ) + 4 ( 5 2 ! ) − 2 4 + 3 0 − 8 = 5 4 ! − 5 ( 5 3 ! ) + 4 ( 5 2 ! ) − 2
Required is : 5 2 ! S + 2
5 2 ! S + 2 = 5 4 . 5 3 − 5 . 5 3 + 4 = 5 3 . 4 9 + 4 = 2 6 0 1
DEMYSTIFIED!!
Well done!! Keep it up.
Log in to reply
Thank you sir.
Log in to reply
Looking forward to solving more sir.
Log in to reply
@Vishwak Srinivasan – Haha.... don't worry, I'll be feeding more.
Hoping to write it into a telescoping series of ( n + 1 ) ! and ( n + 2 ) ! , we propose that:
n 3 + 3 n 2 + 5 n + 2 ≡ [ f ( n + 2 ) ] ( n + 2 ) − [ f ( n + 1 ) ]
where f ( x ) is a quadratic polynomial.
Solving it gives us f ( x ) = ( x − 1 ) 2 .
Therefore,
n = 1 ∑ 5 0 [ ( n 3 + 3 n 2 + 5 n + 2 ) × ( n + 1 ) ! ]
= n = 1 ∑ 5 0 [ ( n + 1 ) 2 × ( n + 2 ) × ( n + 1 ) ! ] − n = 1 ∑ 5 0 [ n 2 × ( n + 1 ) ! ]
= n = 1 ∑ 5 0 [ ( n + 1 ) 2 × ( n + 2 ) ! ] − n = 1 ∑ 5 0 [ n 2 × ( n + 1 ) ! ]
= n = 2 ∑ 5 1 [ n 2 × ( n + 1 ) ! ] − n = 1 ∑ 5 0 [ n 2 × ( n + 1 ) ! ]
= n = 5 1 ∑ 5 1 [ n 2 × ( n + 1 ) ! ] − n = 1 ∑ 1 [ n 2 × ( n + 1 ) ! ]
= 5 1 2 × 5 2 ! − 1 2 × 2 !
= 5 1 2 × 5 2 ! − 2
n 3 + 3 n 2 + 5 n + 2 = ( n + 4 ) ( n + 3 ) ( n + 2 ) − 6 ( n + 3 ) ( n + 2 ) + 9 ( n + 2 ) − 4 . S o w h e n w e m u l t i p l y b y ( n + 1 ) ! , w e g e t n = 1 ∑ 5 0 ( n 3 + 3 n 2 + 5 n + 2 ) ∗ ( n + 1 ) T e l e s c o p i c S e r i e s . = n = 1 ∑ 5 0 ( n + 4 ) ! − 6 ( n + 3 ) ! + 9 ( n + 2 ) ! − 4 ( n + 1 ) ! . = n = 1 ∑ 5 0 { ( n + 4 ) ! − ( n + 3 ) ! − 5 ( n + 3 ) ! + 5 ( n + 2 ) ! + 4 ( n + 2 ) ! − 4 ( n + 1 ) ! } ∴ n = 1 ∑ 5 0 { ( n + 4 ) ! − ( n + 3 ) ! } = − n = 1 ∑ 1 ( n + 3 ) ! − n = 1 ∑ 4 9 ( n + 4 ) ! + n = 1 ∑ 4 9 ( n + 4 ) ! + n = 5 0 ∑ 5 0 ( n + 4 ) ! = − 4 ! + 5 4 ! ∴ n = 1 ∑ 5 0 { − ( n + 3 ) ! + ( n + 2 ) ! } = n = 1 ∑ 1 ( n + 2 ) ! + n = 1 ∑ 4 9 ( n + 3 ) ! − n = 1 ∑ 4 9 ( n + 3 ) ! − n = 5 0 ∑ 5 0 ( n + 3 ) ! = 3 ! − 5 3 ! ∴ n = 1 ∑ 5 0 { ( n + 2 ) ! − ( n + 1 ) ! } = − n = 1 ∑ 1 ( n + 1 ) ! − n = 1 ∑ 4 9 ( n + 2 ) ! + n = 1 ∑ 4 9 ( n + 2 ) ! + n = 5 0 ∑ 5 0 ( n + 2 ) ! = − 2 ! + 5 2 ! S o S = 5 4 ! − 4 ! − 5 ( 5 3 ! − 3 ! ) + 4 ( 5 2 ! − 2 ! ) S = 5 4 ! − 2 4 − 5 ∗ 5 3 ! + 3 0 + 4 ∗ 5 2 ! − 8 S = 5 4 ! − 5 ( 5 3 ! ) + 4 ( 5 2 ! ) − 2 . ∴ 5 2 ! S + 2 = 5 4 ∗ 5 3 − 5 ∗ 5 3 + 4 − 2 + 2 = 2 6 0 1 .
Got as (n+2)!(n^2+3+2n)-(n+1)!(n^2+4+2n) diagonal terms cancelled to get 2 n n! add subtract 1 to n To get telescoping series final result = 2603*52! -52!(2)-2!(7)+2!(6) so (s+2)/52!=2601
happy to do all series demystified!!
I have not yet studied telescopic series and i degenerated the sum. Means in place of summation 1 to 50. Calculate S for 1 and let the summation given for integers 1 to k be shown as S .k then the general term which we have to find is T.k = (S.K + 2)/(k + 2)! So find T.1 = 4 and T.2 = 9 . So we observe T.k =( k + 1)^2. This is an observation and i just wanted to share that one may solve many problems this way by observing patterns. So T.50 = ( 51)^2 = 2601
Algebraic manipulation gives the sum: L . H . S . = n = 1 ∑ 5 0 ( n + 4 ) ! − 6 ( n + 3 ) ! + 9 ( n + 2 ) ! − 4 ( n + 1 ) ! = 5 4 ! − 5 . 5 3 ! + 4 . 5 2 ! − 4 ! + 5 . 3 ! − 4 . 2 ! = 2 6 0 1 . 5 2 ! − 2
Can you explain how you achieve the very first line of your equation? It's not obvious at all.
n
3
+
3
n
2
+
5
n
+
2
=
(
n
+
4
)
(
n
+
3
)
(
n
+
2
)
−
6
(
n
+
3
)
(
n
+
2
)
+
9
(
n
+
2
)
−
4
.
S
o
w
h
e
n
w
e
m
u
l
t
i
p
l
y
b
y
(
n
+
1
)
!
,
w
e
g
e
t
t
h
e
f
i
r
s
t
!
l
i
n
e
.
.
I too did the same way.
Problem Loading...
Note Loading...
Set Loading...
I get S = n = 1 ∑ 5 0 ( ( n + 2 ) ( n + 1 ) 2 − n 2 ) ( n + 1 ) ! = n = 1 ∑ 5 0 ( ( n + 1 ) 2 ( n + 2 ) ! − n 2 ( n + 1 ) ! ) = 5 1 2 ⋅ 5 2 ! − 2
so the answer is 5 1 2 = 2 6 0 1 .