Series Demystified 2

Algebra Level 5

n = 1 50 [ ( n 3 + 3 n 2 + 5 n + 2 ) × ( n + 1 ) ! ] \large \sum_{n=1}^{50} \left[ (n^3+3n^2+5n+2) \times (n+1)! \right]

If the summation above equals to S S , find the value of S + 2 52 ! \frac{S+2}{52!} .

This is one of my original Series Demystified problems .


The answer is 2601.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

8 solutions

Patrick Corn
Jun 22, 2015

I get S = n = 1 50 ( ( n + 2 ) ( n + 1 ) 2 n 2 ) ( n + 1 ) ! = n = 1 50 ( ( n + 1 ) 2 ( n + 2 ) ! n 2 ( n + 1 ) ! ) = 5 1 2 52 ! 2 \begin{aligned} S &= \sum_{n=1}^{50} \left( (n+2)(n+1)^2-n^2 \right) (n+1)! \\ &= \sum_{n=1}^{50} \left( (n+1)^2(n+2)! - n^2(n+1)! \right) \\ &= 51^2 \cdot 52! - 2 \end{aligned}

so the answer is 5 1 2 = 2601 51^2 = \fbox{2601} .

how you thought?

Ayush Verma - 5 years, 11 months ago

Log in to reply

We have (n+1)!*(cubic expression.) So we can make it a (n+1+4)! to simplify the expression.

Niranjan Khanderia - 3 years, 4 months ago

Shortest way, had to think for long :)

Arunava Das - 3 years, 4 months ago

Let the summation be denoted by S S .

S = n = 1 50 [ ( n 3 + 3 n 2 + 5 n + 2 ) ( n + 1 ) ! ] S = \displaystyle \sum_{n=1}^{50}[(n^3 + 3n^2 + 5n + 2)(n+1)!]

S = n = 1 50 [ ( ( n + 2 ) ( n 2 + n + 3 ) 4 ) ( n + 1 ) ! ] \Rightarrow S = \displaystyle \sum_{n=1}^{50}[((n+2)(n^2 + n + 3) - 4)(n+1)!]

S = n = 1 50 [ ( n + 2 ) ! ( n 2 + n + 3 ) 4 ( n + 1 ) ! ] \Rightarrow S = \displaystyle \sum_{n=1}^{50}[(n+2)!(n^2 + n + 3) - 4(n+1)!]

S = n = 1 50 [ ( n + 2 ) ! ( ( n + 3 ) ( n 2 ) + 9 ) 4 ( n + 1 ) ! ] \Rightarrow S = \displaystyle \sum_{n=1}^{50}[(n+2)!((n+3)(n-2) + 9) - 4(n+1)!]

S = n = 1 50 [ ( n + 3 ) ! ( n 2 ) + 9 ( n + 2 ) ! 4 ( n + 1 ) ! ] \Rightarrow S = \displaystyle \sum_{n=1}^{50}[(n+3)!(n-2) + 9(n+2)! - 4(n+1)!]

S = n = 1 50 [ ( n + 3 ) ! ( n + 4 6 ) + 9 ( n + 2 ) ! 4 ( n + 1 ) ! ] \Rightarrow S = \displaystyle \sum_{n=1}^{50}[(n+3)!(n+4 - 6) + 9(n+2)! - 4(n+1)!]

S = n = 1 50 [ ( n + 4 ) ! 6 ( n + 3 ) ! + 9 ( n + 2 ) ! 4 ( n + 1 ) ! ] \Rightarrow S = \displaystyle \sum_{n=1}^{50}[(n+4)! - 6(n+3)! + 9(n+2)! - 4(n+1)!]

S = n = 1 50 [ ( n + 4 ) ! ( n + 3 ) ! ] 5 n = 1 50 [ ( n + 3 ) ! ( n + 2 ) ! ] + 4 n = 1 50 [ ( n + 2 ) ! ( n + 1 ) ! ] \Rightarrow S = \displaystyle \sum_{n=1}^{50}[(n+4)! - (n+3)!] -5\sum_{n=1}^{50} [(n+3)! - (n+2)!] + 4\sum_{n=1}^{50} [(n+2)! - (n+1)!]

There we have it : A Telescopic Series

S = ( 5 ! 4 ! + 6 ! 5 ! + + 54 ! 53 ! ) 5 ( 4 ! 3 ! + 5 ! 4 ! + + 53 ! 52 ! ) + 4 ( 3 ! 2 ! + 4 ! 3 ! + + 52 ! 51 ! ) S = \displaystyle (5! - 4! + 6! - 5! + \ldots + 54! - 53!) - 5(4! - 3! + 5! - 4! + \ldots + 53! - 52!) + 4(3! - 2! + 4! - 3! + \ldots + 52! - 51!)

S = 54 ! 4 ! 5 ( 53 ! 3 ! ) + 4 ( 52 ! 2 ! ) S = \displaystyle 54! - 4! - 5(53! - 3!) + 4(52! - 2!)

S = 54 ! 5 ( 53 ! ) + 4 ( 52 ! ) 24 + 30 8 = 54 ! 5 ( 53 ! ) + 4 ( 52 ! ) 2 \Rightarrow S = 54! - 5(53!) + 4(52!) - 24 + 30 - 8 = 54! - 5(53!) + 4(52!) - 2

Required is : S + 2 52 ! \dfrac{S+2}{52!}

S + 2 52 ! = 54.53 5.53 + 4 = 53.49 + 4 = 2601 \dfrac{S+2}{52!} = 54.53 - 5.53 + 4 = 53.49 + 4 = \boxed{2601}

DEMYSTIFIED!! \large \text{ DEMYSTIFIED!! }

Well done!! Keep it up.

Sanjeet Raria - 5 years, 12 months ago

Log in to reply

Thank you sir.

Vishwak Srinivasan - 5 years, 12 months ago

Log in to reply

Looking forward to solving more sir.

Vishwak Srinivasan - 5 years, 12 months ago

Log in to reply

@Vishwak Srinivasan Haha.... don't worry, I'll be feeding more.

Sanjeet Raria - 5 years, 12 months ago
Kenny Lau
Aug 11, 2015

Hoping to write it into a telescoping series of ( n + 1 ) ! (n+1)! and ( n + 2 ) ! (n+2)! , we propose that:

n 3 + 3 n 2 + 5 n + 2 [ f ( n + 2 ) ] ( n + 2 ) [ f ( n + 1 ) ] n^3+3n^2+5n+2 \equiv [f(n+2)](n+2) - [f(n+1)]

where f ( x ) f(x) is a quadratic polynomial.

Solving it gives us f ( x ) = ( x 1 ) 2 f(x)=(x-1)^2 .

Therefore,

n = 1 50 [ ( n 3 + 3 n 2 + 5 n + 2 ) × ( n + 1 ) ! ] \quad\displaystyle\sum_{n=1}^{50} [(n^3+3n^2+5n+2)\times(n+1)!]

= n = 1 50 [ ( n + 1 ) 2 × ( n + 2 ) × ( n + 1 ) ! ] n = 1 50 [ n 2 × ( n + 1 ) ! ] =\displaystyle\sum_{n=1}^{50} [(n+1)^2\times(n+2)\times(n+1)!] - \sum_{n=1}^{50} [n^2\times(n+1)!]

= n = 1 50 [ ( n + 1 ) 2 × ( n + 2 ) ! ] n = 1 50 [ n 2 × ( n + 1 ) ! ] =\displaystyle\sum_{n=1}^{50} [(n+1)^2\times(n+2)!] - \sum_{n=1}^{50} [n^2\times(n+1)!]

= n = 2 51 [ n 2 × ( n + 1 ) ! ] n = 1 50 [ n 2 × ( n + 1 ) ! ] =\displaystyle\sum_{n=2}^{51} [n^2\times(n+1)!] - \sum_{n=1}^{50} [n^2\times(n+1)!]

= n = 51 51 [ n 2 × ( n + 1 ) ! ] n = 1 1 [ n 2 × ( n + 1 ) ! ] =\displaystyle\sum_{n=51}^{51} [n^2\times(n+1)!] - \sum_{n=1}^{1} [n^2\times(n+1)!]

= 5 1 2 × 52 ! 1 2 × 2 ! =\displaystyle 51^2\times52! - 1^2\times2!

= 5 1 2 × 52 ! 2 =\displaystyle 51^2\times52! - 2

n 3 + 3 n 2 + 5 n + 2 = ( n + 4 ) ( n + 3 ) ( n + 2 ) 6 ( n + 3 ) ( n + 2 ) + 9 ( n + 2 ) 4. S o w h e n w e m u l t i p l y b y ( n + 1 ) ! , w e g e t n = 1 50 ( n 3 + 3 n 2 + 5 n + 2 ) ( n + 1 ) T e l e s c o p i c S e r i e s . = n = 1 50 ( n + 4 ) ! 6 ( n + 3 ) ! + 9 ( n + 2 ) ! 4 ( n + 1 ) ! . = n = 1 50 { ( n + 4 ) ! ( n + 3 ) ! 5 ( n + 3 ) ! + 5 ( n + 2 ) ! + 4 ( n + 2 ) ! 4 ( n + 1 ) ! } n = 1 50 { ( n + 4 ) ! ( n + 3 ) ! } = n = 1 1 ( n + 3 ) ! n = 1 49 ( n + 4 ) ! + n = 1 49 ( n + 4 ) ! + n = 50 50 ( n + 4 ) ! = 4 ! + 54 ! n = 1 50 { ( n + 3 ) ! + ( n + 2 ) ! } = n = 1 1 ( n + 2 ) ! + n = 1 49 ( n + 3 ) ! n = 1 49 ( n + 3 ) ! n = 50 50 ( n + 3 ) ! = 3 ! 53 ! n = 1 50 { ( n + 2 ) ! ( n + 1 ) ! } = n = 1 1 ( n + 1 ) ! n = 1 49 ( n + 2 ) ! + n = 1 49 ( n + 2 ) ! + n = 50 50 ( n + 2 ) ! = 2 ! + 52 ! S o S = 54 ! 4 ! 5 ( 53 ! 3 ! ) + 4 ( 52 ! 2 ! ) S = 54 ! 24 5 53 ! + 30 + 4 52 ! 8 S = 54 ! 5 ( 53 ! ) + 4 ( 52 ! ) 2. S + 2 52 ! = 54 53 5 53 + 4 2 + 2 = 2601. \color{#20A900}{~~n^3+3n^2+5n+2=(n+4)(n+3)(n+2)-6(n+3)(n+2)+9(n+2)-4.\\ So~ when~ we ~multiply ~by ~(n+1)!,~ we ~get\\ \displaystyle \sum_{n=1}^{50}( n^3+3n^2+5n+2)*(n+1)\\ \qquad \qquad \qquad \qquad \qquad Telescopic ~Series.\\ \displaystyle = \sum_{n=1}^{50} (n+4)! - 6(n+3)! + 9(n+2)! - 4(n+1)!.}\\ \displaystyle= \sum_{n=1}^{50} \Big\{{\color{#3D99F6}{ (n+4)! - (n+3)!}} ~~~~~{\color{#E81990}{-~~~~~5(n+3)!+ 5(n+2)!}}~~~~~ {\color{#BA33D6}{+~~~~~4(n+2)!- 4(n+1)!}} \Big\}\\ \displaystyle \therefore { \color{#3D99F6}{\sum_{n=1}^{50}\Big\{(n+4)! - (n+3)! \Big\}=- \sum_{n=1}^1 (n+3)! - \sum_{n=1}^{49}(n+4)!+ \sum_{n=1}^{49}(n+4)!+\sum_{n=50}^{50}(n+4)!} }= - 4!+54! \\ \displaystyle \therefore { \color{#E81990}{\sum_{n=1}^{50}\Big\{ -(n+3)! + (n+2)! \Big\}= \sum_{n=1}^1 (n+2)! +\sum_{n=1}^{49}(n+3)!-\sum_{n=1}^{49}(n+3)!- \sum_{n=50}^{50}(n+3)!}}= 3!-53! \\ \displaystyle \therefore { \color{#BA33D6}{\sum_{n=1}^{50}\Big\{(n+2)! - (n+1)! \Big\}=- \sum_{n=1}^1(n+1)! - \sum_{n=1}^{49}(n+2)!+\sum_{n=1}^{49}(n+2)!+\sum_{n=50}^{50}(n+2)!}} =-2! +52!\\ \color{#20A900}{So~S = 54! - 4!~~~~~ -~~~~~ 5(53! - 3!)~~~~~ +~~~~~ 4(52! - 2!) \\ S= 54! - 24~~~~~-~~~~~5*53!~+30~~~~~ +~~~~~ 4*52! - 8 \\ S = 54! - 5(53!) + 4(52!) - 2.\\ \therefore~\dfrac{S+2}{52!}\\ =54*53-5*53+4-2+2 }\\ =\Large \color{#D61F06}{2601}.

Subh Mandal
Sep 7, 2016

Got as (n+2)!(n^2+3+2n)-(n+1)!(n^2+4+2n) diagonal terms cancelled to get 2 n n! add subtract 1 to n To get telescoping series final result = 2603*52! -52!(2)-2!(7)+2!(6) so (s+2)/52!=2601

Aakash Khandelwal
Jun 22, 2015

happy to do all series demystified!!

Akash Deep
Jun 22, 2015

I have not yet studied telescopic series and i degenerated the sum. Means in place of summation 1 to 50. Calculate S for 1 and let the summation given for integers 1 to k be shown as S .k then the general term which we have to find is T.k = (S.K + 2)/(k + 2)! So find T.1 = 4 and T.2 = 9 . So we observe T.k =( k + 1)^2. This is an observation and i just wanted to share that one may solve many problems this way by observing patterns. So T.50 = ( 51)^2 = 2601

Rajen Kapur
Jun 18, 2015

Algebraic manipulation gives the sum: L . H . S . = n = 1 50 ( n + 4 ) ! 6 ( n + 3 ) ! + 9 ( n + 2 ) ! 4 ( n + 1 ) ! L.H.S. = \sum_{n=1}^{50} (n+4)! - 6(n+3)! + 9(n+2)! - 4(n+1)! = 54 ! 5.53 ! + 4.52 ! 4 ! + 5.3 ! 4.2 ! = 2601.52 ! 2 = 54! - 5. 53! + 4. 52! - 4! + 5 . 3! - 4 . 2! = 2601 . 52! - 2

Moderator note:

Can you explain how you achieve the very first line of your equation? It's not obvious at all.

n 3 + 3 n 2 + 5 n + 2 = ( n + 4 ) ( n + 3 ) ( n + 2 ) 6 ( n + 3 ) ( n + 2 ) + 9 ( n + 2 ) 4. S o w h e n w e m u l t i p l y b y ( n + 1 ) ! , w e g e t t h e f i r s t ! l i n e . n^3+3n^2+5n+2=(n+4)(n+3)(n+2)-6(n+3)(n+2)+9(n+2)-4.\\ So~ when~ we ~multiply ~by ~(n+1)!,~ we ~get~ the~ first! line.\\ .
I too did the same way.

Niranjan Khanderia - 3 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...