Series Thing

Calculus Level 5

n = 1 ln ( 1 ( 1 5 n ) 2 ) = ln ( a π a b a b ) \displaystyle\sum _{n=1}^{\infty } \ln \left(1-\left(\frac{1}{5 n}\right)^2\right) = \ln \left(\frac a \pi \sqrt{\frac{a}{b}-\frac{\sqrt{a}}{b}} \right)

where a a and b b are positive integers. Find a + b a+b .


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Nov 27, 2017

Simple solution thanks to @Jasper Braun

Considering the following identity:

n = 1 ( 1 x 2 n 2 π 2 ) = sin x x Putting x = π 5 n = 1 ( 1 ( 1 5 n ) 2 ) = sin π 5 π 5 n = 1 ln ( 1 ( 1 5 n ) 2 ) = ln ( 5 π sin π 5 ) = ln ( 5 π 5 5 8 ) See note. \begin{aligned} \prod_{n=1}^\infty \left(1-\frac {x^2}{n^2\pi^2}\right) & = \frac {\sin x}x & \small \color{#3D99F6} \text{Putting }x = \frac \pi 5 \\ \prod_{n=1}^\infty \left(1- \left(\frac 1{5n}\right)^2 \right) & = \frac {\sin \frac \pi 5}{\frac \pi 5} \\ \sum_{n=1}^\infty \ln \left(1- \left(\frac 1{5n}\right)^2 \right) & = \ln \left(\frac 5 \pi {\color{#3D99F6} \sin \frac \pi 5} \right) \\ & = \ln \left(\frac 5 \pi {\color{#3D99F6} \sqrt{\frac {5-\sqrt 5}8}} \right) & \small \color{#3D99F6} \text{See note.} \end{aligned}

a + b = 5 + 8 = 13 \implies a+b = 5+8 = \boxed{13}


Note:

Using the identity ( see proof ):

cos π 5 + cos 3 π 5 = 1 2 As cos ( π x ) = cos x cos π 5 cos 2 π 5 = 1 2 cos π 5 2 cos 2 π 5 + 1 = 1 2 4 cos 2 π 5 2 cos π 5 1 = 0 \begin{aligned} \cos \frac \pi 5 + {\color{#3D99F6} \cos \frac {3\pi}5} & = \frac 12 & \small \color{#3D99F6} \text{As }\cos (\pi - x) = - \cos x \\ \cos \frac \pi 5 - {\color{#3D99F6} \cos \frac {2\pi}5} & = \frac 12 \\ \cos \frac \pi 5 - 2 \cos^2 \frac \pi 5 + 1 & = \frac 12 \\ 4 \cos^2 \frac \pi 5 - 2\cos \frac \pi 5 - 1 & = 0 \end{aligned}

Solving the quadratic equation:

cos π 5 = 2 + 20 8 = 1 + 5 4 sin π 5 = 1 cos 2 π 5 = 5 5 8 \begin{aligned} \cos \frac \pi 5 & = \frac {2 + \sqrt{20}}{8} = \frac {1+\sqrt 5}4 \\ \implies \sin \frac \pi 5 & = \sqrt {1-\cos^2 \frac \pi 5} = \sqrt{\frac {5-\sqrt 5}8} \end{aligned}

how did u obtain the 4th step from the 3rd step?? first 2 steps are clear from euler's equation

Rishabh Bhat - 3 years, 5 months ago

Log in to reply

You mean sin π 5 = 5 5 8 \sin \frac \pi 5 = \sqrt{\frac {5-\sqrt 5}8}

Chew-Seong Cheong - 3 years, 5 months ago

Log in to reply

yes. could you explain that?

Rishabh Bhat - 3 years, 5 months ago

Log in to reply

@Rishabh Bhat I was using Wolfram Alpha, thinking it was not important part of the solution. I have added a note to explain it. Hope it helps.

Chew-Seong Cheong - 3 years, 5 months ago

Log in to reply

@Chew-Seong Cheong yes, it does. thank you for the quick response.

Rishabh Bhat - 3 years, 5 months ago

n = 1 ( log ( n 2 ) log ( n 2 y 2 ) ) = n = 1 0 y 2 x n 2 x 2 d x = 0 y ( n = 1 2 x n 2 x 2 ) d x = 0 y 1 π x cot ( π x ) x d x = log ( y csc ( π y ) ) + log ( π ) \displaystyle\sum _{n=1}^{\infty } \left(\log \left(n^2\right)-\log \left(n^2-y^2\right)\right)=\displaystyle\sum _{n=1}^{\infty } \int_0^y \frac{2 x}{n^2-x^2} \, dx=\displaystyle\int_0^y \left(\sum _{n=1}^{\infty } \frac{2 x}{n^2-x^2}\right) \, dx=\displaystyle\int_0^y \frac{1-\pi x \cot (\pi x)}{x} \, dx=\log (y \csc (\pi y))+\log (\pi )

Also, you could use sin x x = n = 1 ( 1 x 2 n 2 π 2 ) \displaystyle\frac{\sin{x}}{x}=\prod_{n=1}^\infty\big(1-\frac{x^2}{n^2\pi^2}\big) at x = π 5 \frac{\pi}{5}

First Last - 3 years, 6 months ago

Log in to reply

Thanks for the hint.

Chew-Seong Cheong - 3 years, 6 months ago

Beautiful solution

space sizzlers - 3 years, 6 months ago

Nice solution. Could you elaborate further on how to get n = 1 2 x n 2 x 2 = 1 π x cot ( π x ) x \displaystyle \sum_{n=1}^\infty \frac {2x}{n^2-x^2} = \frac {1-\pi x \cot(\pi x)}x .

Chew-Seong Cheong - 3 years, 6 months ago

Log in to reply

@Chew-Seong Cheong - I am pretty sure it is a result from complex analysis. You can use this to prove the product formula for sinc, without the Weierstrass/Hadamard factorization theorems.

Christopher Criscitiello - 3 years, 6 months ago

Log in to reply

Thanks. I will try.

Chew-Seong Cheong - 3 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...