Seriously serrated series

Algebra Level 3

1 + 1 1 2 + 1 2 2 + 1 + 1 2 2 + 1 3 2 + 1 + 1 3 2 + 1 4 2 + + 1 + 1 201 9 2 + 1 202 0 2 = ? \sqrt{ 1+ \dfrac{1}{1^2} + \dfrac{1}{2^2} } + \sqrt{ 1+ \dfrac{1}{2^2} + \dfrac{1}{3^2} } + \sqrt{ 1+ \dfrac{1}{3^2} + \dfrac{1}{4^2} }+\cdots+\sqrt{ 1+ \dfrac{1}{2019^2} + \dfrac{1}{2020^2} } = ?

Obviously not original, but modified for 2020.

2019 + 1 2019 2019 + \dfrac{1}{2019} 2020 + 1 2020 {2020 + \dfrac{1}{2020}} 2019 1 2019 {2019 - \dfrac{1}{2019}} 2020 + 1 2019 {2020 + \dfrac{1}{2019}} 2019 + 1 2020 {2019 + \dfrac{1}{2020}} 2020 1 2019 {2020 - \dfrac{1}{2019}} 2019 1 2020 {2019 - \dfrac{1}{2020}} 2020 1 2020 {2020 - \dfrac{1}{2020}}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aryan Sanghi
Sep 24, 2020

Let r t h r^{th} term be T r T_r . So,

T r = 1 + 1 r 2 + 1 ( r + 1 ) 2 T_r = \sqrt{1 + \frac{1}{r^2} + \frac{1}{(r+1)^2}}

T r = ( r ) 2 ( r + 1 ) 2 + ( r + 1 ) 2 + ( r ) 2 ) ( r ) 2 ( r + 1 ) 2 T_r = \sqrt{\frac{(r)^2(r+1)^2 + (r+1)^2 + (r)^2)}{(r)^2(r+1)^2}}

T r = r 4 + 2 r 3 + 3 r 2 + 2 r + 1 r ( r + 1 ) T_r = \frac{\sqrt{r^4 + 2r^3 + 3r^2 + 2r + 1}}{r(r+1)}

T r = ( r 2 + r + 1 ) 2 r ( r + 1 ) T_r = \frac{\sqrt{(r^2 + r + 1)^2}}{r(r+1)}

T r = ( r 2 + r + 1 ) r ( r + 1 ) T_r = \frac{(r^2 + r + 1)}{r(r+1)}

T r = 1 + 1 r ( r + 1 ) T_r = 1 + \frac{1}{r(r + 1)}

T r = 1 + 1 r 1 r + 1 \boxed{T_r = 1 + \frac{1}{r} - \frac{1}{r + 1}}


So, sum is

S = T 1 + T 2 + T 3 + + T 2018 + T 2019 S = T_1 + T_2 + T_3 + \ldots + T_{2018} + T_{2019}

S = ( 1 + 1 1 1 2 ) + ( 1 + 1 2 1 3 ) + ( 1 + 1 3 1 4 ) + + ( 1 + 1 2018 1 2019 ) + ( 1 + 1 2019 1 2020 ) S = \bigg(1 + \frac{1}{1} - \frac{1}{2}\bigg) + \bigg(1 + \frac{1}{2} - \frac{1}{3}\bigg) + \bigg(1 + \frac{1}{3} - \frac{1}{4}\bigg) + \ldots + \bigg(1 + \frac{1}{2018} - \frac{1}{2019}\bigg) + \bigg(1 + \frac{1}{2019} - \frac{1}{2020}\bigg)

S = 2020 1 2020 \color{#3D99F6}{\boxed{S = 2020 - \frac{1}{2020}}}

Beautiful solution! Thank you!

Vinayak Srivastava - 8 months, 2 weeks ago

Log in to reply

Thanku for appreciation. :)

Aryan Sanghi - 8 months, 2 weeks ago

@Vinayak Srivastava

How are you Vinayak Srivasta? btw nice problem. Good solution Aryan

Krishna Karthik - 5 months, 3 weeks ago

Log in to reply

I am okay, just that school assignments and exams don't leave much time for olympiad prep also, let alone Brilliant. Tomorrow also I have History exam. :(

Vinayak Srivastava - 4 months, 3 weeks ago

LOL this question was repeated in IOQM, and I forgot the solution, I had to solve it again. BTW, @Aryan Sanghi , how was your IOQM?

Vinayak Srivastava - 4 months, 3 weeks ago

Log in to reply

I didn't appear in IOQM.

Aryan Sanghi - 4 months, 3 weeks ago

Log in to reply

Ohk. Are you giving KVPY/any other olympiad?

Vinayak Srivastava - 4 months, 3 weeks ago

Log in to reply

@Vinayak Srivastava Yes, I will be giving KVPY and Senior IOQ Olympiads. :)

Aryan Sanghi - 4 months, 3 weeks ago

Log in to reply

@Aryan Sanghi OK, all the best for all of them! :)

Vinayak Srivastava - 4 months, 3 weeks ago

Log in to reply

@Vinayak Srivastava Thank you. :)

Aryan Sanghi - 4 months, 3 weeks ago
Chew-Seong Cheong
Sep 25, 2020

The sum can be written as:

S = n = 1 2019 1 + 1 n 2 + 1 ( n + 1 ) 2 = n = 1 2019 n 2 ( n + 1 ) 2 + ( n + 1 ) 2 + n 2 n 2 ( n + 1 ) 2 = n = 1 2019 n 2 ( n 2 + n + 1 + n ) + ( n 2 + n + 1 + n ) + n 2 n 2 ( n + 1 ) 2 = n = 1 2019 ( n 2 + n + 1 ) ( n 2 + 1 ) + n 3 + n + n 2 n 2 ( n + 1 ) 2 = n = 1 2019 ( n 2 + n + 1 ) ( n 2 + 1 ) + n ( n 2 + n + 1 ) n 2 ( n + 1 ) 2 = n = 1 2019 ( n 2 + n + 1 ) 2 n 2 ( n + 1 ) 2 = n = 1 2019 n 2 + n + 1 n ( n + 1 ) = n = 1 2019 n 2 + n + 1 n 2 + n = n = 1 2019 ( 1 + 1 n ( n + 1 ) ) = n = 1 2019 ( 1 + 1 n 1 n + 1 ) = 2019 + 1 1 2020 = 2020 1 2020 \begin{aligned} S & = \sum_{n=1}^{2019} \sqrt{1 + \frac 1{n^2} + \frac 1{(n+1)^2}} \\ & = \sum_{n=1}^{2019} \sqrt{\frac {n^2(n+1)^2+(n+1)^2+n^2}{n^2(n+1)^2}} \\ & = \sum_{n=1}^{2019} \sqrt{\frac {n^2(n^2+n+1+n)+(n^2+n+1+n)+n^2}{n^2(n+1)^2}} \\ & = \sum_{n=1}^{2019} \sqrt{\frac {(n^2+n+1)(n^2+1)+n^3+n+n^2}{n^2(n+1)^2}} \\ & = \sum_{n=1}^{2019} \sqrt{\frac {(n^2+n+1)(n^2+1)+n(n^2+n+1)}{n^2(n+1)^2}} \\ & = \sum_{n=1}^{2019} \sqrt{\frac {(n^2+n+1)^2}{n^2(n+1)^2}} = \sum_{n=1}^{2019} \frac {n^2+n+1}{n(n+1)} = \sum_{n=1}^{2019} \frac {n^2+n+1}{n^2+n} \\ & = \sum_{n=1}^{2019} \left(1 + \frac 1 {n(n+1)} \right) = \sum_{n=1}^{2019} \left(1 + \frac 1n - \frac 1 {n+1} \right) \\ & = 2019 + 1 - \frac 1{2020} = \boxed{2020-\frac 1{2020}} \end{aligned}

Thank you for sharing your solution Sir! Very similar to @Aryan Sanghi 's solution, but I think there is no more method, or is there?

Vinayak Srivastava - 8 months, 2 weeks ago

Ooh, good manipulation!

Shane Sarosh - 6 months, 1 week ago

Log in to reply

Glad that you like it

Chew-Seong Cheong - 6 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...