Seven seas in this world!

Calculus Level 4

0 x 7 1 e x d x \large \int_0^\infty \dfrac{x^7}{1-e^x} \, dx

If the integral above is equal to A B π C -\frac AB \pi^C , where A , B A,B and C C are coprime positive integers with A , B A,B coprime, find A + B + C A+B+C .


The answer is 31.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Lehasa Seoe
Jul 26, 2017

I used the relation:

ζ ( s ) Γ ( s ) = 0 x s 1 e x 1 d x \zeta(s) \Gamma(s)=\large\int_{0}^{\infty}{ \dfrac{x^{s-1}}{e^{x}-1} \, dx}

Therefore

ζ ( 8 ) Γ ( 8 ) = 0 x 7 1 e x d x -\zeta(8)\Gamma(8)=\large\int_0^\infty \dfrac{x^{7}}{1-e^{x}} \, dx

LHS:

We can first start by evaluating ζ ( 8 ) \zeta(8) :

We use the relation:

π s 2 Γ ( s 2 ) ζ ( s ) = π 1 s 2 Γ ( 1 s 2 ) ζ ( 1 s ) \pi^{\dfrac{-s}{2}} \Gamma\left(\dfrac{s}{2}\right) \zeta(s)= \pi^{-\dfrac{1-s}{2}} \Gamma\left(\dfrac{1-s}{2}\right) \zeta\left(1-s\right)

ζ ( s ) = π s 1 2 Γ ( 1 s 2 ) ζ ( 1 s ) Γ ( s 2 ) \implies \zeta(s)=\dfrac{\pi^{s-\dfrac{1}{2}} \Gamma\left(\dfrac{1-s}{2}\right)\zeta\left(1-s\right)}{\Gamma\left(\dfrac{s}{2}\right)}

ζ ( 8 ) = π 15 2 Γ ( 7 2 ) ζ ( 7 ) Γ ( 4 ) \zeta(8)=\dfrac{\pi^{\dfrac{15}{2}} \Gamma\left(\dfrac{-7}{2}\right)\zeta(-7)}{\Gamma(4)}

ζ ( 8 ) = π 15 2 Γ ( 7 2 ) β 8 8 Γ ( 4 ) \zeta(8)=\dfrac{\pi^{\dfrac{15}{2}} \Gamma\left(\dfrac{-7}{2}\right)\dfrac{\beta_8}{8}}{\Gamma(4)}

ζ ( 8 ) = π 15 2 Γ ( 7 2 ) 1 240 Γ ( 4 ) \zeta(8)=\dfrac{\pi^{\dfrac{15}{2}} \Gamma\left(\dfrac{-7}{2}\right)\dfrac{1}{240}}{\Gamma(4)}

ζ ( 8 ) = π 15 2 Γ ( 7 2 ) 3 ! 240 \zeta(8)=\dfrac{\pi^{\dfrac{15}{2}} \Gamma\left(\dfrac{-7}{2}\right)}{3! 240}

ζ ( 8 ) = π 15 2 Γ ( 7 2 ) 1440 \zeta(8)=\dfrac{\pi^{\dfrac{15}{2}} \Gamma\left(\dfrac{-7}{2}\right)}{1440}

We now use Euler’s reflection formula to compute Γ ( 7 2 ) \Gamma\left(\dfrac{-7}{2}\right)

Γ ( 1 z ) Γ ( z ) = π sin π z \Gamma(1-z) \Gamma(z)=\dfrac{\pi}{\sin \pi z}

Γ ( 9 2 ) Γ ( 7 2 ) = π sin 7 π 2 \Gamma\left(\dfrac{9}{2}\right) \Gamma\left(\dfrac{-7}{2}\right)=\dfrac{\pi}{\sin -\dfrac{7 \pi}{2}}

Γ ( 9 2 ) Γ ( 7 2 ) = π sin π 2 \Gamma\left(\dfrac{9}{2}\right) \Gamma\left(\dfrac{-7}{2}\right)=\dfrac{\pi}{\sin \dfrac{\pi}{2}}

Γ ( 9 2 ) Γ ( 7 2 ) = π \Gamma\left(\dfrac{9}{2}\right) \Gamma\left(\dfrac{-7}{2}\right)=\pi

We can then evaluate Γ ( 9 2 ) \Gamma\left(\dfrac{9}{2}\right) separately, we can reduce it using the fact that:

Γ ( s + 1 ) = s Γ ( s ) \Gamma(s+1)=s\Gamma(s)

Γ ( 9 2 ) = 105 16 Γ ( 1 2 ) \therefore \Gamma\left(\dfrac{9}{2}\right)=\dfrac{105}{16} \Gamma\left(\dfrac{1}{2}\right)

We can then compute Γ ( 1 2 ) \Gamma\left(\dfrac{1}{2}\right) using:

Γ ( s ) = 0 t s 1 e t d t \Gamma(s)=\int_{0}^{\infty} t^{s-1} e^{-t} \, dt

Γ ( 1 2 ) = 0 t 1 2 e t d t \Gamma\left(\dfrac{1}{2}\right)=\int_{0}^{\infty} t^{\dfrac{1}{2}} e^{-t} \, dt

Let t = x 2 t=x^{2} , the variable x x is independent to the one in the question. Thus d t = 2 x d x dt=2xdx

= 2 0 x 1 e x 2 x d x = 2 \int_{0}^{\infty} x^{-1} e^{-x^{2}} x \, dx

= 2 0 e x 2 d x = 2 \int_{0}^{\infty} e^{-x^{2}} \, dx

Since the function we are integrating is an even function, thus instead of having the 2 2 in front of the integral we can re-write it as:

= e x 2 d x = \int_{-\infty}^{\infty} {e^{-x^{2}} \, dx}

We can let the above integral be I I then square it, change the variable of integration on the other, since it won’t affect its value then evaluate.

= ( e x 2 d x ) ( e y 2 d y ) =\left(\int_{-\infty}^{\infty} {e^{-x^{2}} \, dx}\right)\left(\int_{-\infty}^{\infty} {e^{-y^{2}} \, dy}\right)

= e ( x 2 + y 2 ) d x d y = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} {e^{-(x^{2}+y^{2})} \, dxdy}

Let x = r cos θ x=r\cos \theta and y = r sin θ y=r\sin \theta . Computing the Jacobian yields J = r |J|=r

= 0 2 π 0 r e r 2 d r d θ = \int_0^{2\pi} \int_0^\infty r e^{-r^{2}} \, dr d\theta

Let u = r 2 u=r^{2} , 1 2 d u = r d r \dfrac{1}{2} du= rdr .

= 1 2 0 2 π 0 e u d u d θ =\dfrac{1}{2} \int_{0}^{2\pi} \int_{0}^{\infty} {e^{-u} \, du d\theta}

= 1 2 0 2 π e u 0 d θ =\dfrac{1}{2} \int_0^{2\pi} -e^{-u}|_{0}^{\infty} \, d\theta

= 1 2 0 2 π e u 0 d θ =\dfrac{1}{2} \int_0^{2\pi} -e^{-u}|_{0}^{\infty} \, d\theta

= 1 2 0 2 π d θ =\dfrac{1}{2} \int_{0}^{2\pi} \, d\theta

= π =\pi

I 2 = π \therefore I^{2}=\pi meaning I = π I=\sqrt{\pi}

Therefore Γ ( 1 2 ) = π \Gamma \left(\dfrac{1}{2} \right) = \sqrt{\pi}

This means that Γ ( 9 2 ) = 105 π 16 \Gamma \left(\dfrac{9}{2}\right) = \dfrac{105\sqrt{\pi}}{16}

Since:

Γ ( 9 2 ) Γ ( 7 2 ) = π \Gamma\left(\dfrac{9}{2}\right) \Gamma\left(\dfrac{-7}{2}\right)=\pi

This means that:

Γ ( 7 2 ) = 16 π 105 \Gamma\left(\dfrac{-7}{2}\right)=\dfrac{16\sqrt{\pi}}{105}

Then:

ζ ( 8 ) = π 15 2 16 π 105 1440 \zeta(8)=\dfrac{\pi^{\dfrac{15}{2}} \dfrac{16\sqrt{\pi}}{105}}{1440}

ζ ( 8 ) = π 8 9450 \therefore \zeta(8) = \dfrac{\pi^{8}}{9450}

Finally we reach our answer to the integral to be:

0 x 7 1 e x d x = ζ ( 8 ) Γ ( 8 ) = π 8 9450 ( 8 1 ) ! = 8 π 8 15 \large\int_0^\infty \dfrac{x^{7}}{1-e^{x}} \, dx = -\zeta(8)\Gamma(8) = -\dfrac{\pi^{8}}{9450} \left(8-1 \right)!= -\dfrac{8\pi^{8}}{15}

A + B + C = 8 + 15 + 8 = 31 \therefore A+B+C= 8+15+8= 31

Aditya Kumar
Jan 13, 2016

First we substitute: e x = x e^{-x}=x

We get: I = 0 1 ( l n x ) 7 x 1 I=\int _{ 0 }^{ 1 }{ \frac { { \left( lnx \right) }^{ 7 } }{ x-1 } }

We will use poly-gamma function for this.

ψ 7 ( n + 1 ) = 0 1 x n ( l n x ) 7 x 1 { \psi }_{ 7 }\left( n+1 \right) =\int _{ 0 }^{ 1 }{ \frac { { x }^{ n }{ \left( lnx \right) }^{ 7 } }{ x-1 } }

Now, we substitute n = 0 n=0

ψ 7 ( 1 ) = 0 1 ( l n x ) 7 x 1 { \psi }_{ 7 }\left( 1 \right) =\int _{ 0 }^{ 1 }{ \frac { { \left( lnx \right) }^{ 7 } }{ x-1 } }

Now, we use the relation: ψ n ( z ) = ( 1 ) n + 1 n ! ζ ( n + 1 , z ) { \psi }_{ n }\left( z \right) ={ \left( -1 \right) }^{ n+1 }n!\zeta \left( n+1,z \right)

Here ζ ( n + 1 , z ) \zeta \left( n+1,z \right) is Hurwitz zeta function.

Now, we substitute n = 7 n=7 and z = 1 z=1 .

ψ 7 ( 1 ) = 7 ! ζ ( 8 , 1 ) { \psi }_{ 7 }\left( 1 \right) =-7!\zeta \left( 8,1 \right)

Now, we use the property: ζ ( n + 1 , 1 ) = ζ ( n + 1 ) \zeta \left( n+1,1 \right) =\zeta \left( n+1 \right)

Therefore we get: ψ 7 ( 1 ) = 7 ! ζ ( 8 ) { \psi }_{ 7 }\left( 1 \right) =-7!\zeta \left( 8 \right)

Therefore the answer is: 8 π 8 15 \frac{-8{\pi}^{8}}{15}

Note that ζ ( 8 ) = π 8 9450 \zeta \left( 8 \right)=\frac{{\pi}^{8}}{9450}

Easier way is to use the relation between polylogarithm and gamma function, Li s ( z ) Γ ( s ) = 0 t s 1 e t z 1 d t \displaystyle \operatorname{Li}_{s}(z)\Gamma(s) = \int_{0}^{\infty} \dfrac{t^{s-1}}{\frac{e^t}{z}-1}\mathrm{d}t which can be proved by interchanging summation (of G.P.) and integral.

Ishan Singh - 5 years, 5 months ago

Log in to reply

Yes I know that. I just wanted to introduce people to Hurwitz zeta function. That's why I made this problem. Actually my intention is to introduce juniors with new functions so that they can learn and apply them in brilliant integration contest 3 in December.

Aditya Kumar - 5 years, 5 months ago

Dude but its very difficult to memorize the values of RZF as order gets higher and higher

Akhilesh Vibhute - 5 years, 4 months ago

Log in to reply

True that. You always have the internet for that. Or you can derive it.

Aditya Kumar - 5 years, 4 months ago

Log in to reply

can you explain me how to derive that?because i don't know

Akhilesh Vibhute - 5 years, 4 months ago

Log in to reply

@Akhilesh Vibhute Use the formula: ζ ( 2 n ) = ( 1 ) n + 1 B 2 n ( 2 π ) 2 n 2 ( 2 n ) ! \zeta \left( 2n \right) =\frac { { \left( -1 \right) }^{ n+1 }{ B }_{ 2n }{ \left( 2\pi \right) }^{ 2n } }{ 2\left( 2n \right) ! }

You can get limited number of values for Bernoulli number from here .

Aditya Kumar - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...