Should we really integrate it? 2

Calculus Level 4

Find

sin 2 4 x ( 2 x ) 2 d x . \large \displaystyle \int_{-\infty}^{\infty} \dfrac{\sin^{2} 4x}{(2x)^{2}} \, dx.

2 π 2\pi π 2 \frac{\pi}{2} π 4 \frac{\pi}{4} π \pi

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 22, 2016

I = sin 2 4 x ( 2 x ) 2 d x As the integrand is even = 0 sin 2 4 x 2 x 2 d x = 1 4 0 1 cos 8 x x 2 d x By integration by parts = 1 4 [ cos 8 x 1 x ] 0 + 2 0 sin 8 x x d x Let u = 8 x d u = 8 d x = 0 + 2 0 sin u u d u Dirichlet integral = 2 ( π 2 ) = π \begin{aligned} I & = \int_{-\infty}^\infty \frac{\sin^2 4x}{(2x)^2}\, dx \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \small \color{#3D99F6}{\text{As the integrand is even}} \\ & = \int_0^\infty \frac{\sin^2 4x}{2x^2}\, dx \\ & = \frac{1}{4} \int_0^\infty \frac{1-\cos 8x}{x^2}\, dx \quad \quad \quad \quad \quad \quad \quad \quad \, \, \small \color{#3D99F6}{\text{By integration by parts}} \\ & = \frac{1}{4} \left[ \frac {\cos 8x -1}{x} \right]_0^\infty + 2 \int_0^\infty \frac{\sin 8x}{x} \, dx \quad \quad \small \color{#3D99F6}{\text{Let }u = 8x \implies du = 8 \, dx} \\ & = 0 + 2 \color{#3D99F6} {\int_0^\infty \frac{\sin u}{u} \, du} \quad \quad \quad \quad \quad \quad \quad \quad \quad \, \, \small \color{#3D99F6}{\text{Dirichlet integral}} \\ & = 2 \left( \color{#3D99F6}{\frac{\pi}{2}} \right) \\ & = \boxed{\pi} \end{aligned}

Great (+1), I liked the way you did it. Really nice :), Have a look at my solution also.

Abhay Tiwari - 5 years, 1 month ago
Abhay Tiwari
Apr 22, 2016

Did it using Duality property of Fourier Transform.

Can you use your method to solve this one ? I am trying to do it using my method.

Chew-Seong Cheong - 5 years, 1 month ago

Log in to reply

Sir, not able to form a generalized formula through my method. Will solve it some other way.

Abhay Tiwari - 5 years, 1 month ago

Log in to reply

I managed to come up with the solution.

Chew-Seong Cheong - 5 years, 1 month ago

Log in to reply

@Chew-Seong Cheong Great(+1) !!, please post the solution there I will see it after solving. :)

Abhay Tiwari - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...