Sicherman on steroids

Exploring this idea for twelve-sided dice, in how many different ways can one construct an (unordered) pair of 12-sided dice which

  • are not normal, 12-sided dice (i.e. not simply numbered 1 through 12),
  • bear only positive integers, and
  • when summed have the same probability distribution as the sum of a pair of normal, 12-sided dice?
0 1 4 7

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Mark Hennings
Jun 6, 2017

We want to factorise the probability generating function 1 144 ( t + t 2 + t 3 + + t 11 + t 12 ) 2 = 1 144 t 2 ( t + 1 ) 2 ( t 2 + t + 1 ) 2 ( t 2 + 1 ) 2 ( t 2 t + 1 ) 2 ( t 4 t 2 + 1 ) 2 \tfrac{1}{144}(t + t^2 + t^3 + \cdots + t^{11} + t^{12})^2 \; = \; \tfrac{1}{144}t^2(t+1)^2(t^2+t+1)^2(t^2+1)^2(t^2-t+1)^2(t^4 - t^2+1)^2 of the random variable of the sum of two normal 12 12 -sided dice as the product P ( t ) Q ( t ) P(t)Q(t) of two polynomials where

  • neither P ( t ) P(t) nor Q ( t ) Q(t) have a constant coefficient,
  • both 12 P ( t ) 12P(t) and 12 Q ( t ) 12Q(t) have nonnegative integer coefficients,
  • P ( 1 ) = Q ( 1 ) = 1 P(1) = Q(1) = 1 .

There are a number of possible candidates:

  • P ( t ) = P a , b ( t ) = 1 12 t ( t 2 + t + 1 ) ( t + 1 ) 2 ( t 2 t + 1 ) a ( t 4 t 2 + 1 ) b P(t) = P_{a,b}(t) = \tfrac{1}{12}t(t^2+t+1)(t+1)^2(t^2-t+1)^a(t^4-t^2+1)^b and Q ( t ) = Q a , b ( t ) = 1 12 t ( t 2 + t + 1 ) ( t 2 + 1 ) ( t 2 t + 1 ) 2 a ( t 4 t 2 + 1 ) 2 b Q(t) = Q_{a,b}(t) = \tfrac{1}{12}t(t^2+t+1)(t^2+1)(t^2-t+1)^{2-a}(t^4-t^2+1)^{2-b} for some integers 0 a , b 2 0 \le a,b \le 2 . All of these possibilities satisfy the condition P ( 1 ) = Q ( 1 ) = 1 P(1) = Q(1) = 1 , but not all of these options give nonnegative coefficients. The cases that do give nonnegative coefficients are ( a , b ) = ( 1 , 0 ) , ( 1 , 1 ) , ( 2 , 0 ) , ( 2 , 1 ) (a,b) = (1,0), (1,1), (2,0), (2,1) . This gives us 4 4 possible dice pairs.

  • P ( t ) = R a , b ( t ) = 1 12 t ( t 2 + t + 1 ) ( t + 1 ) ( t 2 + 1 ) ( t 2 t + 1 ) a ( t 4 t 2 + 1 ) b P(t) = R_{a,b}(t) = \tfrac{1}{12}t(t^2+t+1)(t+1)(t^2+1)(t^2-t+1)^a(t^4-t^2+1)^b and Q ( t ) = R 2 a , 2 b ( t ) Q(t) = R_{2-a,2-b}(t) for some integers 0 a , b 2 0 \le a,b \le 2 . The ( a , b ) = ( 0 , 2 ) (a,b) = (0,2) case yields some negative coefficients. The cases ( 0 , 0 ) (0,0) and ( 2 , 2 ) (2,2) give the same pair of dice, as do the cases ( 0 , 1 ) (0,1) and ( 2 , 1 ) (2,1) and also the cases ( 1 , 0 ) (1,0) and ( 1 , 2 ) (1,2) . The case ( 1 , 1 ) (1,1) gives the normal pair of dice. Thus there are 3 3 possible new pairs of dice.

That makes 7 \boxed{7} pairs of dice in total.

Write D n D_n for a uniform distribution on { 0 , 1 , , n 1 } \{0,1,\dots,n-1\} . Then we are looking for different ways to rewrite 2 + D 12 + D 12 2 + D_{12} + D_{12} . Now we can split D 12 D_{12} into at most three parts, featuring D 3 D_3 once and D 2 D_2 twice: D 12 = D 3 + 6 D 2 + 3 D 2 = 2 D 3 + 6 D 2 + D 2 = 4 D 3 + 2 D 2 + D 2 . D_{12} = D_3 + 6D_2 + 3D_2 = 2D_3 + 6D_2 + D_2 = 4D_3 + 2D_2 + D_2.

New twelve-sided dice are created by swapping out D 2 D_2 terms. We explore the six possible decompositions of 2 + D 12 + D 12 2 + D_{12} + D_{12} :

  • ( 1 + D 3 + 6 D 2 + 3 D 2 ) + ( 1 + D 3 + 6 D 2 + 3 D 2 ) (1 + D_3 + 6D_2 + 3D_2) + (1 + D_3 + 6D_2 + 3D_2) . There is one possible swap: D A = 1 + D 3 + 6 D 2 + 6 D 2 = [ 1 , 2 , 3 , 7 , 7 , 8 , 8 , 9 , 9 , 13 , 14 , 15 ] ; D B = 1 + D 3 + 3 D 2 + 3 D 2 = [ 1 , 2 , 3 , 4 , 4 , 5 , 5 , 6 , 6 , 7 , 8 , 9 ] . D_A = 1 + D_3 + 6D_2 + 6D_2 = [1,2,3,7,7,8,8,9,9,13,14,15]; \\ D_B = 1 + D_3 + 3D_2 + 3D_2 = [1,2,3,4,4,5,5,6,6,7,8,9].

  • ( 1 + 2 D 3 + 6 D 2 + D 2 ) + ( 1 + 2 D 3 + 6 D 2 + D 2 ) (1 + 2D_3 + 6D_2 + D_2) + (1 + 2D_3 + 6D_2 + D_2) . Again, one possible swap: D A = 1 + 2 D 3 + 6 D 2 + 6 D 2 = [ 1 , 3 , 5 , 7 , 7 , 9 , 9 , 11 , 11 , 13 , 15 , 17 ] ; D B = 1 + 2 D 3 + D 2 + D 2 = [ 1 , 2 , 2 , 3 , 3 , 4 , 4 , 5 , 5 , 6 , 6 , 7 ] . D_A = 1 + 2D_3 + 6D_2 + 6D_2 = [1,3,5,7,7,9,9,11,11,13,15,17]; \\ D_B = 1 + 2D_3 + D_2 + D_2 = [1,2,2,3,3,4,4,5,5,6,6,7].

  • ( 1 + 4 D 3 + 2 D 2 + D 2 ) + ( 1 + 4 D 3 + 2 D 2 + D 2 ) (1 + 4D_3 + 2D_2 + D_2) + (1 + 4D_3 + 2D_2 + D_2) . Another single swap here: D A = 1 + 4 D 3 + 2 D 2 + 2 D 2 = [ 1 , 3 , 3 , 5 , 5 , 7 , 7 , 9 , 9 , 11 , 11 , 13 ] ; D B = 1 + 4 D 3 + D 2 + D 2 = [ 1 , 2 , 2 , 3 , 5 , 6 , 6 , 7 , 9 , 10 , 10 , 11 ] . D_A = 1 + 4D_3 + 2D_2 + 2D_2 = [1,3,3,5,5,7,7,9,9,11,11,13]; \\ D_B = 1 + 4D_3 + D_2 + D_2 = [1,2,2,3,5,6,6,7,9,10,10,11].

  • ( 1 + D 3 + 6 D 2 + 3 D 2 ) + ( 1 + 2 D 3 + 6 D 2 + D 2 ) (1 + D_3 + 6D_2 + 3D_2) + (1 + 2D_3 + 6D_2 + D_2) . Again, one possible swap: D A = 1 + D 3 + 6 D 2 + D 2 = [ 1 , 2 , 2 , 3 , 3 , 4 , 7 , 8 , 8 , 9 , 9 , 10 ] ; D B = 1 + 2 D 3 + 6 D 2 + 3 D 2 = [ 1 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 14 ] . D_A = 1 + D_3 + 6D_2 + D_2 = [1,2,2,3,3,4,7,8,8,9,9,10]; \\ D_B = 1 + 2D_3 + 6D_2 + 3D_2 = [1,3,4,5,6,7,8,9,10,11,12,14].

  • ( 1 + 2 D 3 + 6 D 2 + D 2 ) + ( 1 + 4 D 3 + 2 D 2 + D 2 ) (1 + 2D_3 + 6D_2 + D_2) + (1 + 4D_3 + 2D_2 + D_2) . One swap: D A = 1 + 2 D 3 + 2 D 2 + D 2 = [ 1 , 2 , 3 , 3 , 4 , 4 , 5 , 5 , 6 , 6 , 7 , 8 ] ; D B = 1 + 4 D 3 + 6 D 2 + D 2 = [ 1 , 2 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 15 , 16 ] . D_A = 1 + 2D_3 + 2D_2 + D_2 = [1,2,3,3,4,4,5,5,6,6,7,8]; \\ D_B = 1 + 4D_3 + 6D_2 + D_2 = [1,2,5,6,7,8,9,10,11,12,15,16].

  • ( 1 + 4 D 3 + 2 D 2 + D 2 ) + ( 1 + D 3 + 6 D 2 + 3 D 2 ) (1 + 4D_3 + 2D_2 + D_2) + (1 + D_3 + 6D_2 + 3D_2) . This is the most interesting case, because there are four different D 2 D_2 terms involved, allowing for six possible pairings. Thus there are five possible swaps:

D A = 1 + 4 D 3 + 2 D 2 + 3 D 2 = [ 1 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 14 ] ; D B = 1 + D 3 + 6 D 2 + D 2 = [ 1 , 2 , 2 , 3 , 3 , 4 , 7 , 8 , 8 , 9 , 9 , 10 ] . D_A = 1 + 4D_3 + 2D_2 + 3D_2 = [1,3,4,5,6,7,8,9,10,11,12,14]; \\ D_B = 1 + D_3 + 6D_2 + D_2 = [1,2,2,3,3,4,7,8,8,9,9,10]. But we must discard this because it is equivalent to one we found before! We continue:

D A = 1 + 4 D 3 + 2 D 2 + 6 D 2 = [ 1 , 3 , 5 , 7 , 7 , 9 , 9 , 11 , 11 , 13 , 15 , 17 ] ; D B = 1 + D 3 + 3 D 2 + D 2 = [ 1 , 2 , 2 , 3 , 3 , 4 , 4 , 5 , 5 , 6 , 6 , 7 ] . D_A = 1 + 4D_3 + 2D_2 + 6D_2 = [1,3,5,7,7,9,9,11,11,13,15,17]; \\ D_B = 1 + D_3 + 3D_2 + D_2 = [1,2,2,3,3,4,4,5,5,6,6,7]. Again, this only doubles a result we found earlier.

D A = 1 + 4 D 3 + 3 D 2 + D 2 = [ 1 , 2 , 4 , 5 , 5 , 6 , 8 , 9 , 9 , 10 , 12 , 13 ] ; D B = 1 + D 3 + 6 D 2 + 2 D 2 = [ 1 , 2 , 3 , 3 , 4 , 5 , 7 , 8 , 9 , 9 , 10 , 11 ] . D_A = 1 + 4D_3 + 3D_2 + D_2 = [1,2,4,5,5,6,8,9,9,10,12,13]; \\ D_B = 1 + D_3 + 6D_2 + 2D_2 = [1,2,3,3,4,5,7,8,9,9,10,11].

D A = 1 + 4 D 3 + 6 D 2 + D 2 = [ 1 , 2 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 15 , 16 ] ; D B = 1 + D 3 + 2 D 2 + 3 D 2 = [ 1 , 2 , 3 , 3 , 4 , 4 , 5 , 5 , 6 , 6 , 7 , 8 ] . D_A = 1 + 4D_3 + 6D_2 + D_2 = [1,2,5,6,7,8,9,10,11,12,15,16]; \\ D_B = 1 + D_3 + 2D_2 + 3D_2 = [1,2,3,3,4,4,5,5,6,6,7,8]. This, too, is a result we found earlier.

D A = 1 + 4 D 3 + 3 D 2 + 6 D 2 = [ 1 , 4 , 5 , 7 , 8 , 9 , 10 , 11 , 12 , 14 , 15 , 18 ] ; D B = 1 + D 3 + 2 D 2 + D 2 = [ 1 , 2 , 2 , 3 , 3 , 3 , 4 , 4 , 4 , 5 , 5 , 6 ] . D_A = 1 + 4D_3 + 3D_2 + 6D_2 = [1,4,5,7,8,9,10,11,12,14,15,18]; \\ D_B = 1 + D_3 + 2D_2 + D_2 = [1,2,2,3,3,3,4,4,4,5,5,6].

In total, then 7 \boxed{7} different ways to construct the new dice.

The "different ways" would have to be clarified further. If I swap the pair around, does that constitute a different way?

Calvin Lin Staff - 4 years ago

Log in to reply

I believe that question is sufficiently answered by the case of the Sicherman dice, which are unique, up to swapping the pair around.

Arjen Vreugdenhil - 4 years ago

Log in to reply

Would you mind if it stated "a (unordered) pair of 12-sided dice"?

Calvin Lin Staff - 4 years ago

Log in to reply

@Calvin Lin I don't mind at all!

Arjen Vreugdenhil - 4 years ago

Comparing this solution and that of @Mark Hennings , an interesting question is how different the solutions really are. A partial translation, at least, is possible. Define d n ( x ) = x n 1 + + x 2 + x + 1. d_n(x) = x^{n-1} + \cdots + x^2 + x + 1. Then my " D D " notation above can be translated to generating function polynomials as follows:

  • 1 t 1 \mapsto t ,

  • + × +\ \mapsto\ \times ,

  • D n d n ( t ) D_n \mapsto d_n(t) ,

  • a D n d n ( t a ) aD_n \mapsto d_n(t^a) .

Thus D A = 1 + 4 D 3 + 3 D 2 + 6 D 2 t ( t 8 + t 4 + 1 ) ( t 3 + 1 ) ( t 6 + 1 ) . D_A = 1 + 4D_3 + 3D_2 + 6D_2 \mapsto t(t^8 + t^4 + 1)(t^3 + 1)(t^6 + 1). Factorize these factors further, and we find Mark's solution. In this case, for instance, t 3 + 1 = ( t 2 t + 1 ) ( t + 1 ) , t 6 + 1 = ( t 4 t 2 + 1 ) ( t 2 + 1 ) , t 8 + t 4 + 1 = ( t 2 + t + 1 ) ( t 2 t + 1 ) ( t 4 t 2 + 1 ) . t^3 + 1 = (t^2 - t + 1)(t + 1),\ \ t^6 + 1 = (t^4 - t^2 + 1)(t^2 + 1), \\ t^8 + t^4 + 1 = (t^2 + t + 1)(t^2 - t + 1)(t^4 - t^2 + 1). This further factorization introduces negative coefficients and therefore non-solutions. On the other hand, it results a unique factorization, while my D D notation has non-unique decomposition and therefore results in generating identical solutions. D 12 = { 4 D 3 + 2 D 2 + D 2 6 D 2 + 2 D 3 + D 2 6 D 2 + 3 D 2 + D 3 t 11 + + t + 1 = { ( t 8 + t 4 + 1 ) ( t 2 + 1 ) ( t + 1 ) ( t 6 + 1 ) ( t 4 + t 2 + 1 ) ( t + 1 ) ( t 6 + 1 ) ( t 3 + 1 ) ( t 2 + t + 1 ) = ( t 4 t 2 + 1 ) ( t 2 + t + 1 ) ( t 2 t + 1 ) ( t 2 + 1 ) ( t + 1 ) . D_{12} = \begin{cases} 4D_3 + 2D_2 + D2 \\ 6D_2 + 2D_3 + D_2 \\ 6D_2 + 3D_2 + D_3 \end{cases} \mapsto t^{11} + \dots + t + 1 = \begin{cases} (t^8 + t^4 + 1)(t^2 + 1)(t + 1) \\ (t^6 + 1)(t^4 + t^2 + 1)(t + 1) \\ (t^6 + 1)(t^3 + 1)(t^2 + t + 1) \end{cases} = (t^4 - t^2 + 1)(t^2 + t + 1)(t^2 - t + 1)(t^2 + 1)(t + 1). Reconciling the two methods could be accomplished by introducing the pseudo-die D 3 = { 2 , 1 , 0 } D^\star_3 = \{2,1^\star,0\} with the rules D 3 + D 3 = { 4 , 3 , 3 , 2 , 2 , 2 , 1 , 1 , 0 } = { 4 , 2 , 0 } = 2 D 3 , D 2 + D 3 = { 3 , 2 , 2 , 1 , 1 , 0 } = { 3 , 0 } = 3 D 2 . D_3 + D^\ast_3 = \{4,3,3^\star,2,2,2^\star,1,1^\star,0\} = \{4,2,0\} = 2D_3, \\ D_2 + D^\ast_3 = \{3,2,2^\star,1,1^\star,0\} = \{3,0\} = 3D_2. where the \ast operator indicates removal from the set. Now we get D 12 = 2 D 3 + D 3 + D 3 + 2 D 2 + D 2 , D_{12} = 2D^\star_3 + D_3 + D^\star_3 + 2D_2 + D_2, and the former ambiguity is resolved: D 12 = { 4 D 3 + 2 D 2 + D 2 = ( 2 D 3 + D 3 + D 3 ) + 2 D 2 + D 2 6 D 2 + 2 D 3 + D 2 = ( 2 D 3 + 2 D 2 ) + ( D 3 + D 3 ) + D 2 6 D 2 + 3 D 2 + D 3 = ( 2 D 3 + 2 D 2 ) + ( D 3 + D 2 ) + D 3 . D_{12} = \begin{cases} 4D_3 + 2D_2 + D2 = (2D^\star_3 + D_3 + D^\star_3) + 2D_2 + D_2 \\ 6D_2 + 2D_3 + D_2 = (2D^\star_3 + 2D_2) + (D^\star_3 + D_3) + D_2 \\ 6D_2 + 3D_2 + D_3 = (2D^\star_3 + 2D_2) + (D^\star_3 + D_2) + D_3.\end{cases} The problem becomes a redistribution of the ten D D -terms in D 12 + D 12 = D A + D B D_{12} + D_{12} = D_A + D_B in two groups in such a way, that

  • each group has one non-starred D 3 D_3 term, and two D 2 D_2 terms,

  • each D 3 D^\star_3 remains combined with D 2 D_2 or D 3 D_3 , and each 2 D 3 2D^\star_3 remains combined with 2 D 2 2D_2 or 2 D 3 = D 3 + D 3 2D_3 = D_3 + D^\star_3 .

The eight solutions (or fifteen possible dice) are easily reproduced by considering where the four starred terms go:

  • D 3 + 2 D 3 + 2 D 3 + D 3 + D 3 + 2 D 2 + D 2 D_3 + 2D^\star_3 + 2D^\star_3 + D^\star_3 + D^\star_3 + 2D_2 + D_2 ; die with maximum value = 18.

  • D 3 + 2 D 3 + 2 D 3 + D 3 + 2 D 2 + 2 D 2 D_3 + 2D^\star_3 + 2D^\star_3 + D^\star_3 + 2D_2 + 2D_2 ; maximum value = 17.

  • D 3 + 2 D 3 + 2 D 3 + D 3 + 2 D 2 + D 2 D_3 + 2D^\star_3 + 2D^\star_3 + D^\star_3 + 2D_2 + D_2 ; maximum value = 16.

  • D 3 + 2 D 3 + 2 D 3 + 2 D 2 + 2 D 2 D_3 + 2D^\star_3 + 2D^\star_3 + 2D_2 + 2D_2 ; maximum value = 15.

  • D 3 + 2 D 3 + D 3 + D 3 + 2 D 2 + D 2 D_3 + 2D^\star_3 + D^\star_3 + D^\star_3 + 2D_2 + D_2 ; maximum value = 14.

  • D 3 + 2 D 3 + D 3 + D 3 + D 2 + D 2 D_3 + 2D^\star_3 + D^\star_3 + D^\star_3 + D_2 + D_2 ; maximum value = 13.

  • D 3 + 2 D 3 + D 3 + 2 D 2 + 2 D 2 D_3 + 2D^\star_3 + D^\star_3 + 2D_2 + 2D_2 ; maximum value = 13.

  • D 3 + 2 D 3 + D 3 + 2 D 2 + D 2 D_3 + 2D^\star_3 + D^\star_3 + 2D_2 + D_2 ; maximum value = 12 (the "normal" die).

  • D 3 + 2 D 3 + D 3 + D 2 + D 2 D_3 + 2D^\star_3 + D^\star_3 + D_2 + D_2 ; maximum value = 11.

  • D 3 + 2 D 3 + 2 D 2 + 2 D 2 D_3 + 2D^\star_3 + 2D_2 + 2D_2 ; maximum value = 11.

  • D 3 + 2 D 3 + 2 D 2 + D 2 D_3 + 2D^\star_3 + 2D_2 + D_2 ; maximum value = 10.

  • D 3 + D 3 + D 3 + 2 D 2 + D 2 D_3 + D^\star_3 + D^\star 3 + 2D_2 + D_2 ; but the other die would be wrong

  • D 3 + D 3 + D 3 + D 2 + D 2 D_3 + D^\star_3 + D^\star 3 + D_2 + D_2 ; maximum value = 9.

  • D 3 + D 3 + 2 D 2 + 2 D 2 D_3 + D^\star_3 + 2D_2 + 2D_2 ; but the other die would be wrong

  • D 3 + D 3 + 2 D 2 + D 2 D_3 + D^\star_3 + 2D_2 + D_2 ; maximum value = 8.

  • D 3 + D 3 + D 2 + D 2 D_3 + D^\star_3 + D_2 + D_2 ; maximum value = 7.

  • D 3 + 2 D 2 + 2 D 2 D_3 + 2D_2 + 2D_2 ; but the other die would be wrong.

  • D 3 + 2 D 2 + D 2 D_3 + 2D_2 + D_2 ; maximum value = 6.

  • D 3 + D 2 + D 2 D_3 + D_2 + D_2 ; but the other die would be wrong.

Arjen Vreugdenhil - 4 years ago
K T
Nov 9, 2019

Found these, using a Python script: A=[1,4,5,7,8,9,10,11,12,14,15,18] ; B=[1,2,2,3,3,3,4,4,4,5,5,6] A=[1,3,5,7,7,9,9,11,11,13,15,17] ; B=[1,2,2,3,3,4,4,5,5,6,6,7] A=[1,3,4,5,6,7,8,9,10,11,12,14] ; B=[1,2,2,3,3,4,7,8,8,9,9,10] A=[1,3,3,5,5,7,7,9,9,11,11,13] ; B=[1,2,2,3,5,6,6,7,9,10,10,11] A=[1,2,5,6,7,8,9,10,11,12,15,16] ; B=[1,2,3,3,4,4,5,5,6,6,7,8] A=[1,2,4,5,5,6,8,9,9,10,12,13] ; B=[1,2,3,3,4,5,7,8,9,9,10,11] A=[1,2,3,7,7,8,8,9,9,13,14,15] ; B=[1,2,3,4,4,5,5,6,6,7,8,9]

For dice with other number of sides 1-15: 4: A=[1,3,3,5] ; B=[1,2,2,3] 6: A=[1,3,4,5,6,8] ; B=[1,2,2,3,3,4] 8: A=[1,3,5,5,7,7,9,11] ; B=[1,2,2,3,3,4,4,5], A=[1,3,3,5,5,7,7,9] ; B=[1,2,2,3,5,6,6,7], A=[1,2,5,5,6,6,9,10] ; B=[1,2,3,3,4,4,5,6] 9: A=[1,4,4,7,7,7,10,10,13] ; B=[1,2,2,3,3,3,4,4,5] 10: A=[1,3,5,6,7,8,9,10,12,14] ; B=[1,2,2,3,3,4,4,5,5,6] 14: A=[1,3,5,7,8,9,10,11,12,13,14,16,18,20] ; B=[1,2,2,3,3,4,4,5,5,6,6,7,7,8] 15: A=[1,4,6,7,9,10,11,12,13,14,15,17,18,20,23] ; B=[1,2,2,3,3,3,4,4,4,5,5,5,6,6,7]

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...