Simple ?

Calculus Level 4

Given that

I ( n ) = 0 π 4 cos n x d x , { I }(n)=\int _{ 0 }^{ \frac { \pi }{ 4 } }{ \cos ^{ n }{ x } \, dx },

if I ( 5 ) = a b c I(5) = \frac { a\sqrt { b } }{ c } , what is a + b + c ? a + b + c?

Details and Assumptions:

  • You can use cos a x d x = 1 a sin a x \int { \cos { ax } } \, dx =\frac { 1 }{ a } \sin { ax } .
  • a , b , c a, b, c are positive integers, gcd ( a , c ) = 1 , \gcd(a,c)=1, and b b is a square-free integer.


The answer is 165.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Deepanshu Gupta
Dec 16, 2014

By Using Complex Numbers :

Let y = e i x y\quad =\quad { e }^{ ix }\quad .

2 cos ( n x ) = y n + 1 y n 2 cos x = y + 1 y ( 2 cos x ) 5 = ( y + 1 y ) 5 ( 2 cos x ) 5 = y 5 + 5 y 3 + 10 y + 10 y + 5 y 3 + 1 y 5 ( 2 cos x ) 5 = ( y 5 + 1 y 5 ) + 5 ( y 3 + 1 y 3 ) + 10 ( y + 1 y ) cos 5 x = 1 16 ( cos 5 x + 5 cos 3 x + 10 cos x ) cos 5 x d x = 1 16 ( cos 5 x + 5 cos 3 x + 10 cos x ) d x 2\cos { (nx) } =\quad { y }^{ n }+\cfrac { 1 }{ { y }^{ n } } \\ 2\cos { x } =\quad y+\cfrac { 1 }{ y } \\ { (2\cos { x } ) }^{ 5 }\quad =\quad { (y+\cfrac { 1 }{ y } ) }^{ 5 }\quad \\ { (2\cos { x } ) }^{ 5 }\quad =\quad { y }^{ 5 }\quad +\quad 5{ y }^{ 3 }\quad +\quad 10y\quad +\quad \cfrac { 10 }{ y } +\cfrac { 5 }{ { y }^{ 3 } } +\cfrac { 1 }{ { y }^{ 5 } } \\ \\ { (2\cos { x } ) }^{ 5 }\quad =\quad ({ y }^{ 5 }\quad +\cfrac { 1 }{ { y }^{ 5 } } )\quad +\quad 5({ y }^{ 3 }+\cfrac { 1 }{ { y }^{ 3 } } )\quad +\quad 10(y+\cfrac { 1 }{ y } )\\ \\ \cos ^{ 5 }{ x } =\quad \cfrac { 1 }{ 16 } (\cos { 5x } \quad +\quad 5\cos { 3x } \quad +\quad 10\cos { x } )\\ \\ \int { \cos ^{ 5 }{ x\quad dx } } \quad =\quad \int { \cfrac { 1 }{ 16 } (\cos { 5x } \quad +\quad 5\cos { 3x } \quad +\quad 10\cos { x } )dx } .

Now Compute This Simple Integral :)


Credit of Solution : @megh choksi

I learn This Technique from Megh Choksi in This Note : Complex numbers Techniques

Deepanshu Gupta - 6 years, 5 months ago

Log in to reply

thank you, Great Friend , once again

lim n r = 1 n ( V e r y N i c e ) r \lim _{ n\rightarrow \infty }{ \prod _{ r=1 }^{ n }{ { (Very\quad Nice) }^{ r } } }

this is copied from your comment

U Z - 6 years, 5 months ago

Log in to reply

ur welcome , It was You who taught me this awesome Technique , So all Credit Goes To You Only :)

Deepanshu Gupta - 6 years, 5 months ago
Tony Sprinkle
Jan 4, 2015

I used a technique other than what was suggested:

I ( 5 ) = 0 π 4 cos 5 x d x I(5) = \int_0^{\frac{\pi}{4}} \cos^5 x\: dx

Since cos 2 x = 1 sin 2 x \cos^2 x = 1 - \sin^2 x , we get:

= 0 π 4 ( 1 sin 2 x ) 2 cos x d x = \int_0^{\frac{\pi}{4}} (1 - \sin^2 x)^2 \cos x\: dx

Let u = sin x u = \sin x . Thus d u = cos x d x du = \cos x\: dx :

= 0 2 2 ( 1 u 2 ) 2 d u = \int_0^{\frac{\sqrt{2}}{2}} (1 - u^2)^2 \: du = 0 2 2 ( 1 2 u 2 + u 4 ) d u = \int_0^{\frac{\sqrt{2}}{2}} (1 - 2u^2 + u^4)\: du = ( u 2 u 3 3 + u 5 5 ) 0 2 2 = \left.\left(u - \frac{2u^3}{3} + \frac{u^5}{5}\right)\right|_0^{\frac{\sqrt{2}}{2}} = 2 2 2 6 + 2 40 = 43 2 120 = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{6} + \frac{\sqrt{2}}{40} = \frac{43\sqrt{2}}{120}

Thus, a = 43 , b = 2 , a = 43,\: b = 2, and c = 120 c = 120 , and a + b + c = 165 a + b + c = \boxed{165} .

Ronak Agarwal
Dec 15, 2014

As the title says yes it is simple.

Simply form the recursion and solve it.

I n = 0 π 4 c o s n ( x ) d x = 0 π 4 c o s n 1 ( x ) . c o s ( x ) d x \displaystyle {I}_{n}=\int _{ 0 }^{ \frac { \pi }{ 4 } }{ { cos }^{ n }(x)dx } =\int _{ 0 }^{ \frac { \pi }{ 4 } }{ { cos }^{ n-1 }(x).cos(x)dx }

Applying intgration by parts we get :

I n = c o s n 1 ( x ) . s i n ( x ) 0 π 4 ( n 1 ) 0 π 4 c o s n 2 ( x ) . s i n 2 ( x ) d x \displaystyle {I}_{n}={ cos }^{ n-1 }(x).sin(x)\overset { \frac { \pi }{ 4 } }{ \underset { 0 }{ | } } -(n-1)\int _{ 0 }^{ \frac { \pi }{ 4 } }{ { cos }^{ n-2 }(x).{ sin }^{ 2 }(x)dx }

I n = c o s n 1 ( x ) . s i n ( x ) 0 π 4 ( n 1 ) 0 π 4 c o s n 2 ( x ) . ( 1 c o s 2 ( x ) ) d x \displaystyle {I}_{n}={ cos }^{ n-1 }(x).sin(x)\overset { \frac { \pi }{ 4 } }{ \underset { 0 }{ | } } -(n-1)\int _{ 0 }^{ \frac { \pi }{ 4 } }{ { cos }^{ n-2 }(x).(1-{cos}^{2}(x))dx }

I n = ( 1 2 ) n + ( n 1 ) I n 2 ( n 1 ) I n { I }_{ n }={ (\frac { 1 }{ \sqrt { 2 } } ) }^{ n }+(n-1){ I }_{ n-2 }-(n-1){ I }_{ n }

Simplifying this we get :

I n = 1 n ( 1 2 ) n + n 1 n I n 2 { I }_{ n }={ \frac { 1 }{ n } (\frac { 1 }{ \sqrt { 2 } } ) }^{ n }+\frac { n-1 }{ n } { I }_{ n-2 }

Also we have the initial values I 1 = 1 2 , I 0 = π 4 {I}_{1}=\frac{1}{\sqrt{2}},{I}_{0}=\frac{\pi}{4}

Solving the recursion we have I 5 = 43 2 120 {I}_{5}=\frac{43\sqrt{2}}{120}

A rare "simple" question from Deepanshu ! :P btw Nicely Done ! :)

Keshav Tiwari - 6 years, 6 months ago

Log in to reply

Reason Why I Shared this Problem is :

I want from all to Solve it By using The Complex numbers !

e i x = cos x + i sin x { e }^{ ix }\quad =\quad \cos { x } +i\sin { x } .

That's why I shared This :)

Deepanshu Gupta - 6 years, 6 months ago

Log in to reply

Use \displaystyle in your latex the integral sign will look much better

Krishna Sharma - 6 years, 6 months ago

Log in to reply

@Krishna Sharma Sorry But I didn't understand that How To use This Latex ? Could You Post an example So that I can Copied That ? Thanks @Krishna Sharma

Deepanshu Gupta - 6 years, 5 months ago

Log in to reply

@Deepanshu Gupta Write \displaystyle at the start of any latex you write it will look much better

\int_0^{1} x dx = 0 1 x d x \int_0^{1} x dx

\displaystyle \int_0^{1} x dx = 0 1 x d x \displaystyle \int_0^{1} x dx

Krishna Sharma - 6 years, 5 months ago

Log in to reply

@Krishna Sharma Thanks a lot to both of You Krishna and Parth Lohomi :)

Deepanshu Gupta - 6 years, 5 months ago

Log in to reply

@Deepanshu Gupta No problem!!

Parth Lohomi - 6 years, 5 months ago

@Deepanshu Gupta \displaystyle\int_{0}^{\frac{\pi}{4}}) c o s n x cos^{n}x d x dx gives you

0 π 4 \displaystyle\int_{0}^{\dfrac{\pi}{4}} c o s n x cos^{n}x d x dx

Parth Lohomi - 6 years, 5 months ago
Incredible Mind
Dec 18, 2014

Y not simply sub sinx=t

What would that give you?

Calvin Lin Staff - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...