Simpler than it looks

Algebra Level 2

log 17 ( log 11 ( x + 11 + x ) ) = 0 \large \log_{17} \left( \log_{11} \left( \sqrt{x+11} + \sqrt{x} \right) \right) = 0

Find the sum of all values of x x satisfying the above equation.


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 27, 2016

log 17 ( log 11 ( x + 11 + x ) ) = 0 log 11 ( x + 11 + x ) = 1 x + 11 + x = 11 x + 11 + 2 x 2 + 11 x + x = 121 2 x 2 + 11 x = 110 2 x x 2 + 11 x = 55 x x 2 + 11 x = 5 5 2 110 x + x 2 121 x = 5 5 2 x = 25 \begin{aligned} \log_{17} \left( \log_{11} \left( \sqrt{x+11} + \sqrt{x} \right) \right) & = 0 \\ \log_{11} \left( \sqrt{x+11} + \sqrt{x} \right) & = 1 \\ \sqrt{x+11} + \sqrt{x} & = 11 \\ x + 11 + 2 \sqrt{x^2+11x} + x & = 121 \\ 2 \sqrt{x^2+11x} & = 110 - 2x \\ \sqrt{x^2+11x} & = 55 - x \\ x^2+11x & = 55^2-110x + x^2 \\ 121x & = 55^2 \\ \implies x & = \boxed{25} \end{aligned}

Since there is only one value of x x satisfying the equation, the sum of solutions is 25 \boxed{25} .

Syed Baqir
Sep 15, 2015

l o g 17 l o g 11 ( ( x + 11 ) + x ) = 0 log_{17}log_{11}(\sqrt(x+11) + \sqrt{x} ) = 0

r i s e e v e r y t h i n g t o t h e p o w e r o f 17 \longrightarrow \large rise \ everything \ to \ the \ power \ of \ 17

l o g 11 ( ( x + 11 ) + x ) = 1 log_{11}(\sqrt(x+11) + \sqrt{x} ) = 1

r i s e e v e r y t h i n g t o t h e p o w e r o f 11 \longrightarrow rise \ everything \ to \ the \ power \ of \ 11

( ( x + 11 ) + x ) = 11 (\sqrt(x+11) + \sqrt{x} ) = 11 --------- (i)

x + 11 = 11 x \sqrt { x\quad +\quad 11 } =\quad 11\quad -\quad \sqrt { x } \quad

( x + 11 ) 2 = ( 11 x ) 2 { (\sqrt { x\quad +\quad 11 } ) }^{ 2 }\quad =\quad (\quad 11\quad -\quad \sqrt { x } )^{ 2 }

x + 11 = 121 + x 22 x \underline { x } +\quad 11\quad =\quad 121\quad +\quad \underline { x } \quad -\quad 22\quad \sqrt { x }

( 110 22 ) 2 = ( x ) 2 x = 25 { (\frac { 110 }{ 22 } ) }^{ 2 }=\quad (\sqrt { x } )^{ 2 }\quad \Rrightarrow \quad x\quad =\quad 25\quad

S u b s t i t u t i n g x = 25 Substituting \ x = 25 in equation (i)

w e w i l l g e t 11 = 11 \longrightarrow \ we \ will \ get \ 11 = 11

L . H . S = R . H . S L.H.S = R.H.S

Show how you got 25

Kushagra Sahni - 5 years, 9 months ago

Log in to reply

Can you please do it for me ?

Thanks

Syed Baqir - 5 years, 9 months ago

Log in to reply

Take root x to the RHS and square both sides.

Kushagra Sahni - 5 years, 9 months ago

Log in to reply

@Kushagra Sahni Thanks, I got it , I have updated my solution

Syed Baqir - 5 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...