⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ x y z = 6 tan − 1 ( x ) + tan − 1 ( y ) + tan − 1 ( z ) = π x y + y z + z x = 1 1
Let x , y , z are real numbers satisfy the above equations. Then find the value of x 5 + y 5 + z 5 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Hmm... I did the same thing but I've just realised
arctan ( 1 ) + arctan ( 2 ) + arctan ( 3 ) = π
Log in to reply
Yeah, you are right.
But I am not able to find where I am wrong. :-(
Log in to reply
tan 0 = tan π = 0 .
Log in to reply
@Sudeep Salgia – I forgot that but I converted tan A = − tan ( C + B ) ; tan A = x , tan B = y , tan C = z and solved this thing.
@Vishwak Srinivasan , please edit the Solution!
Its a property which says if x+y+z=xyz , then atanx+atany+atanz=π
@monty g , @Vishwak Srinivasan , @Sudeep Salgia , @shivamani patil : Well, @Isaac Buckley is correct. I've updated the problem! :)
Problem Loading...
Note Loading...
Set Loading...
cyc ∑ tan − 1 x = π ⇒ x + y + z = x y z
x + y + z = 6
x y + y z + x z = 1 1
Let us consider a monic cubic polynomial having roots x , y , z .
For the sake of clarity, let us call it f ( u )
f ( u ) = u 3 − 6 u 2 + 1 1 u − 6
Since the sum of coefficients of f ( u ) is 0 , 1 is a root of f ( u )
f ( u ) = ( u − 1 ) ( u 2 − 5 u + 6 ) = ( u − 1 ) ( u − 2 ) ( u − 3 )
⇒ f ( u ) = 0 , u = 1 , 2 , 3
Hence the values of x , y , z are 1 , 2 , 3 respectively.
x 5 + y 5 + z 5 = 1 + 3 2 + 2 4 3 = 2 7 6
Note:
Why cyc ∑ tan − 1 x = π ⇒ x + y + z = x y z ?
π = tan − 1 x + tan − 1 y + tan − 1 z = tan − 1 ( 1 − x y − y z − x z x + y + z − x y z )
Taking tan on both sides, we get
tan − 1 ( 1 − x y − y z − x z x + y + z − x y z ) = 0
⇒ x + y + z − x y z = 0 ⇒ x + y + z = x y z