Simultaneous Equations in Three Variables!

Geometry Level 4

{ x y z = 6 tan 1 ( x ) + tan 1 ( y ) + tan 1 ( z ) = π x y + y z + z x = 11 \large { \begin{cases} xyz=6 \\ \tan^{-1}(x) + \tan^{-1}(y) + \tan^{-1}(z) = \pi \\ xy+yz+zx = 11 \\ \end{cases} }

Let x , y , z x,y,z are real numbers satisfy the above equations. Then find the value of x 5 + y 5 + z 5 x^5 + y^5 + z^5 .

Image Credit: Flickr Francine Vernez .


The answer is 276.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

cyc tan 1 x = π x + y + z = x y z \displaystyle \sum_{\text{cyc}} \tan^{-1}x = \pi \Rightarrow x + y + z = xyz

x + y + z = 6 x + y + z = 6

x y + y z + x z = 11 xy + yz + xz = 11

Let us consider a monic cubic polynomial having roots x , y , z x,y,z .

For the sake of clarity, let us call it f ( u ) f(u)

f ( u ) = u 3 6 u 2 + 11 u 6 f(u) = u^3 - 6u^2 + 11u - 6

Since the sum of coefficients of f ( u ) f(u) is 0 0 , 1 1 is a root of f ( u ) f(u)

f ( u ) = ( u 1 ) ( u 2 5 u + 6 ) = ( u 1 ) ( u 2 ) ( u 3 ) f(u) = (u-1)(u^2 - 5u + 6) = (u-1)(u-2)(u-3)

f ( u ) = 0 , u = 1 , 2 , 3 \Rightarrow f(u) = 0 , u = 1,2,3

Hence the values of x , y , z x,y,z are 1 , 2 , 3 1,2,3 respectively.

x 5 + y 5 + z 5 = 1 + 32 + 243 = 276 x^5 + y^5 + z^5 = 1 + 32 + 243 = \boxed{276}


Note:

Why cyc tan 1 x = π x + y + z = x y z \displaystyle \sum_{\text{cyc}} \tan^{-1}x = \pi \Rightarrow x + y + z = xyz ?

π = tan 1 x + tan 1 y + tan 1 z = tan 1 ( x + y + z x y z 1 x y y z x z ) \pi = \tan^{-1}x + \tan^{-1}y + \tan^{-1}z = \tan^{-1} \left(\dfrac{x + y + z - xyz}{1 - xy - yz - xz} \right)

Taking tan \tan on both sides, we get

tan 1 ( x + y + z x y z 1 x y y z x z ) = 0 \tan^{-1} \left(\dfrac{x + y + z - xyz}{1 - xy - yz - xz} \right) = 0

x + y + z x y z = 0 x + y + z = x y z \Rightarrow x + y + z - xyz = 0 \Rightarrow x + y + z = xyz

  • Please upvote if you like the solution.

Hmm... I did the same thing but I've just realised

arctan ( 1 ) + arctan ( 2 ) + arctan ( 3 ) = π \arctan(1)+\arctan(2)+\arctan(3)=π

Isaac Buckley - 5 years, 11 months ago

Log in to reply

Yeah, you are right.

But I am not able to find where I am wrong. :-(

Vishwak Srinivasan - 5 years, 11 months ago

Log in to reply

tan 0 = tan π = 0 \tan 0 = \tan \pi = 0 .

Sudeep Salgia - 5 years, 11 months ago

Log in to reply

@Sudeep Salgia I forgot that but I converted tan A = tan ( C + B ) ; tan A = x , tan B = y , tan C = z \tan { A } =-\tan { (C+B) } ;\tan { A } =x,\tan { B } =y,\tan { C } =z and solved this thing.

shivamani patil - 5 years, 11 months ago

@Vishwak Srinivasan , please edit the Solution!

Satyajit Mohanty - 5 years, 11 months ago

Log in to reply

@Satyajit Mohanty I have edited it.

Vishwak Srinivasan - 5 years, 11 months ago

Its a property which says if x+y+z=xyz , then atanx+atany+atanz=π

monty g - 5 years, 11 months ago

@monty g , @Vishwak Srinivasan , @Sudeep Salgia , @shivamani patil : Well, @Isaac Buckley is correct. I've updated the problem! :)

Satyajit Mohanty - 5 years, 11 months ago

Log in to reply

Good now it is flawless :)

shivamani patil - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...