Sine of e?

Calculus Level 3

If 2 f ( x ) + f ( x ) = 1 x sin ( x 2 1 x ) 2f(x) + f(-x) = \frac 1x \sin\left( \frac{x^2-1}x \right) for x > 0 x > 0 , then what is the value of the integral below?

1 e e f ( x ) d x \large \int_{\frac 1e}^e f(x) \, dx

Try my set


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

2 f ( x ) + f ( x ) = 1 x sin ( x 2 1 x ) . . . . . . . . . ( 1 ) 2f(x) + f(-x) = \frac{1}{x} \sin(\frac{x^2 - 1}{x}) . . . . . . . . . (1)

Substitute x x x \rightarrow -x

2 f ( x ) + f ( x ) = 1 x sin ( x 2 1 x ) = 1 x sin ( x 2 1 x ) . . . . . . . . ( 2 ) sin ( x ) = s i n ( x ) and the negative signs get cancelled 2f(-x) + f(x) = \frac{1}{-x}\sin(\frac{x^2 - 1}{-x}) = \frac{1}{x} \sin(\frac{x^2 - 1}{x}) . . . . . . . . (2) \because \sin(-x) = -sin(x) \text{ and the negative signs get cancelled }

Using ( (1) & (2)) (\text{(1) \& (2))} , we get

f ( x ) = 1 3 x sin ( x 2 1 x ) f(x) = \frac{1}{3x} \sin(\frac{x^2 - 1}{x})

1 e e f ( x ) d x = 1 e e 1 3 sin ( x 2 1 x ) d x \displaystyle\int _{\frac{1}{e}}^{e} f(x) dx = \int_{\frac{1}{e}}^{e} \frac{1}{3} \sin(\frac{x^2 - 1}{x}) dx

Substitute x = e t d x = e t d t x = e^t \Rightarrow dx = e^t dt

The limits get changed to ( 1 , 1 ) (-1,1) and so does the integral.

The changed integral (say I I is:

I = 1 1 1 3 e t sin ( e t 1 e t ) e t d t = 1 1 1 3 sin ( e t 1 e t ) d t I = \displaystyle \int_{-1}^{1} \frac{1}{3e^t} \sin(e^t - \frac{1}{e^t}) e^t dt = \int_{-1}^{1} \frac{1}{3} \sin(e^t -\frac{1}{e^t}) dt

The integrand is an odd function and hence I = 0 \boxed{I = 0}

I did the same as you to find f ( x ) f(x) , but when calculating the Integral, I used that a b f ( x ) = a b f ( a + b x ) \displaystyle \int_{a}^{b} f(x) = \int_{a}^{b} f(a+b-x) , thus, we have: I = 1 e e 1 3 x s i n ( x 2 1 x ) = 1 e e 1 3 ( e + 1 e x ) s i n ( x 2 1 x ) = I \displaystyle I = \int_{\frac{1}{e}}^{e} \frac{1}{3x}sin\left(\frac{x^2-1}{x}\right) = \int_{\frac{1}{e}}^{e} -\frac{1}{3(e+\frac{1}{e}-x)}sin\left(\frac{x^2-1}{x}\right)=-I then, I = I 2 I = 0 I = 0 I=-I \Rightarrow 2I=0 \Rightarrow I=0

Gabriel Benício - 6 years, 1 month ago

Log in to reply

You have forgotten to substitute e + 1 e x x e + \frac{1}{e} - x \leftarrow x in the sin \sin part. And how is that I -I , by the way.?

Vishwak Srinivasan - 6 years, 1 month ago

Log in to reply

No, I haven't... In that case, s i n ( x 2 1 x ) = s i n ( x 1 x ) \displaystyle sin\left( \frac{x^2-1}{x}\right) = sin\left(x-\frac{1}{x}\right) , substitute and you have s i n ( 1 e e + e 1 e x + 1 x ) = s i n ( x 1 x ) sin\left(\frac{1}{e} - e + e-\frac{1}{e}-x+\frac{1}{x}\right) = - sin\left(x-\frac{1}{x}\right)

Gabriel Benício - 6 years, 1 month ago

Log in to reply

@Gabriel Benício Ok...but the denominator?

Vishwak Srinivasan - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...