If 2 f ( x ) + f ( − x ) = x 1 sin ( x x 2 − 1 ) for x > 0 , then what is the value of the integral below?
∫ e 1 e f ( x ) d x
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I did the same as you to find f ( x ) , but when calculating the Integral, I used that ∫ a b f ( x ) = ∫ a b f ( a + b − x ) , thus, we have: I = ∫ e 1 e 3 x 1 s i n ( x x 2 − 1 ) = ∫ e 1 e − 3 ( e + e 1 − x ) 1 s i n ( x x 2 − 1 ) = − I then, I = − I ⇒ 2 I = 0 ⇒ I = 0
Log in to reply
You have forgotten to substitute e + e 1 − x ← x in the sin part. And how is that − I , by the way.?
Log in to reply
No, I haven't... In that case, s i n ( x x 2 − 1 ) = s i n ( x − x 1 ) , substitute and you have s i n ( e 1 − e + e − e 1 − x + x 1 ) = − s i n ( x − x 1 )
Log in to reply
@Gabriel Benício – Ok...but the denominator?
Problem Loading...
Note Loading...
Set Loading...
2 f ( x ) + f ( − x ) = x 1 sin ( x x 2 − 1 ) . . . . . . . . . ( 1 )
Substitute x → − x
2 f ( − x ) + f ( x ) = − x 1 sin ( − x x 2 − 1 ) = x 1 sin ( x x 2 − 1 ) . . . . . . . . ( 2 ) ∵ sin ( − x ) = − s i n ( x ) and the negative signs get cancelled
Using ( (1) & (2)) , we get
f ( x ) = 3 x 1 sin ( x x 2 − 1 )
∫ e 1 e f ( x ) d x = ∫ e 1 e 3 1 sin ( x x 2 − 1 ) d x
Substitute x = e t ⇒ d x = e t d t
The limits get changed to ( − 1 , 1 ) and so does the integral.
The changed integral (say I is:
I = ∫ − 1 1 3 e t 1 sin ( e t − e t 1 ) e t d t = ∫ − 1 1 3 1 sin ( e t − e t 1 ) d t
The integrand is an odd function and hence I = 0