Solve if You Can

Calculus Level pending

Given

S = 1 + 2 1 2 2 + 3 2 2 12 + 5 2 7 24 2 + 17 12 2 80 + , S = 1 + \frac{ \sqrt{2 } - 1 } { 2 \sqrt{2} } + \frac{ 3 - 2 \sqrt{2} } { 12} + \frac{ 5 \sqrt{2} - 7 } { 24 \sqrt{2} } + \frac{ 17 - 12 \sqrt{2} } {80 } + \ldots ,

find S . \lceil S \rceil .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Discussions for this problem are now closed

U Z
Dec 8, 2014

We can see here that { ❤ }{ ❤ } ( 2 1 ) 2 = 3 2 2 , ( 2 1 ) 3 = 5 2 7 , ( 2 1 ) 4 = 17 12 2 . . (\sqrt{2} - 1)^{2} = 3 - 2\sqrt{2} , (\sqrt{2} - 1)^{3} = 5\sqrt{2} - 7 , (\sqrt{2} - 1)^{4} = 17 - 12\sqrt{2} ..

Let 2 1 2 = x \dfrac{\sqrt{2} - 1}{\sqrt{2}} = x

Thus,

S = 1 + x 2 + x 2 6 + x 3 12 . . . . . . . . S = 1 + \dfrac{x}{2} + \dfrac{x^{2}}{6} + \dfrac{x^{3}}{12} ........

S = 1 + x 1 × 2 + x 2 2 × 3 + x 3 3 × 4 . . . . . . . . . . . . . . . . \boxed{S = 1 + \dfrac{x}{1 \times 2} + \dfrac{x^{2}}{2\times3} + \dfrac{x^{3}}{3\times4} ................}

S = 1 + ( 1 1 2 ) x + ( 1 2 1 3 ) x 2 + ( 1 3 1 4 ) x 3 + . . . . . . . . . . . . . . S = 1 + ( 1 - \frac{1}{2})x + (\frac{1}{2} - \frac{1}{3})x^{2} + (\frac{1}{3} - \frac{1}{4})x^{3} + ..............

S = ( 1 + x + x 2 2 + x 3 3 + . . . . . ) ( x 2 + x 2 3 + x 3 4 + . . . . S = ( 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{3} + .....) - (\frac{x}{2} + \frac{x^{2}}{3} + \frac{x^{3}}{4} + ....

S = 1 l o g ( 1 x ) 1 x ( x 2 2 + x 3 3 + . . . . . . . . . ) S = 1 - log(1 - x) - \frac{1}{x}(\frac{x^{2}}{2} + \frac{x^{3}}{3} + .........)

S = 1 l o g ( 1 x ) 1 x ( l o g ( 1 x ) x ) S = 1 - log(1- x) - \frac{1}{x}( -log(1 - x) -x)

S = 2 1 2 ( 2 + 1 ) l o g 2 S = 2 - \frac{1}{2}(\sqrt{2} + 1)log2

S = 1.1633 S = 1.1633

[ S ] = 1 [S] = 1


@Vraj Mehta Nice question! \heartsuit \heartsuit \heartsuit \heartsuit { ❤ }{ ❤ }{ ❤ }{ ❤ }

Awesome! I just got that.

Ninad Akolekar - 6 years, 6 months ago

Can you explain how ( 2 1 ) 4 = 17 2 2 (\sqrt{ 2} - 1 ) ^ 4 = 17 - 2 \sqrt{2} ?

Calvin Lin Staff - 6 years, 6 months ago

Oh sorry sir for the third and fourth term i was getting a nice hint so for the next term i copied the trem from the question. Edited , if my approach is not correct then what we can do?

if the fourth term has 2 instead of 12 , then the sequence is not followed by the fourth term , now till infinity the expression reachs , then every term should follow the sequence , i think so also here it is written enhance your concepts on p r o g r e s s i o n s \color{#D61F06}{progressions} , thus there would be a common ratio(constant increase in every term) so it should'nt be flagged

Thank you

@Calvin Lin

U Z - 6 years, 6 months ago

@Vraj Mehta Can you clarify what the fifth term is? Should the numerator be 17 12 2 17 - 12 \sqrt{2} ?

Calvin Lin Staff - 6 years, 6 months ago

@Calvin Lin You are Right!Calvin Lin Sorry But Cant change ..Solve the ques Assuming the Fifth Term is 17-12*root2.

Vraj Mehta - 6 years, 6 months ago

@Vraj Mehta Thanks for clarifying. I have updated the problem accordingly.

Note that you can edit your problem directly by selecting "edit" from the "dot dot dot" menu in the lower right corner.

Calvin Lin Staff - 6 years, 6 months ago

Thank you..Megh Choksi

Vraj Mehta - 6 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...