Solve it in Friday 13th - part 3

Geometry Level 5

cos ( 2 π 13 ) cos ( 6 π 13 ) cos ( 8 π 13 ) \large \cos\left(\dfrac{2\pi}{13}\right)\cos\left(\dfrac{6\pi}{13}\right)\cos\left(\dfrac{8\pi}{13}\right)

If the trigonometric expression above can be expressed as a b c \dfrac{a-\sqrt{b}}{c} for positive integers a , b , c a,b,c with b b is a square-free number and gcd ( a , c ) = 1 \text{gcd}(a,c)=1 , find a + b + c a+b+c .

See Part 1 and part 2 .


The answer is 32.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let w = e 2 π i / 13 w=e^{2 \pi i/13} , a = cos ( 2 π 13 ) cos ( 6 π 13 ) cos ( 8 π 13 ) a=\cos\left(\dfrac{2\pi}{13}\right)\cos\left(\dfrac{6\pi}{13}\right)\cos\left(\dfrac{8\pi}{13}\right) and b = cos ( 4 π 13 ) cos ( 10 π 13 ) cos ( 12 π 13 ) b=\cos\left(\dfrac{4\pi}{13}\right)\cos\left(\dfrac{10\pi}{13}\right)\cos\left(\dfrac{12\pi}{13}\right) .

We know the fact that w + w 2 + w 3 + + w 12 = 1 w+w^2+w^3+\cdots+w^{12}=-1 , which follows inmediatly from factoring w 13 = 1 w^{13}=1 . We are going to use this everytime we see it; and that 1 2 ( w k + 1 / w k ) = cos ( 2 π k 13 ) \dfrac{1}{2}(w^k+1/w^k)=\cos\left(\dfrac{2 \pi k}{13}\right) .

Now, express them in terms of w w :

a = ( w + w 12 2 ) ( w 3 + w 10 2 ) ( w 4 + w 9 2 ) b = ( w 2 + w 11 2 ) ( w 5 + w 8 2 ) ( w 6 + w 7 2 ) a=\left(\dfrac{w+w^{12}}{2}\right)\left(\dfrac{w^3+w^{10}}{2}\right)\left(\dfrac{w^4+w^9}{2}\right) \\ b=\left(\dfrac{w^2+w^{11}}{2}\right)\left(\dfrac{w^5+w^8}{2}\right)\left(\dfrac{w^6+w^7}{2}\right) .

Expand them:

a = w 2 + w 5 + w 6 + w 7 + w 8 + w 11 + 2 8 b = w + w 3 + w 4 + w 9 + w 10 + w 12 + 2 8 a=\dfrac{w^2+w^5+w^6+w^7+w^8+w^{11}+2}{8} \\ b=\dfrac{w+w^3+w^4+w^9+w^{10}+w^{12}+2}{8}

With this, find a + b = 3 8 a+b=\dfrac{3}{8} and a b ab , which is a little messy product to expand: a b = 1 64 ab=-\dfrac{1}{64} .

Finally, use Vieta's formulas with the fact that this time that a < 0 a<0 and b > 0 b>0 : a = 3 13 16 a=\dfrac{3-\sqrt{13}}{16} and b = 3 + 13 16 b=\dfrac{3+\sqrt{13}}{16}

Thus, the final answer is 3 + 13 + 16 = 32 3+13+16=\boxed{32} .

Chew-Seong Cheong
Jun 24, 2015

cos 2 π 13 cos 6 π 13 cos 8 π 13 = cos 2 π 13 cos 6 π 13 ( cos 2 π 13 cos 6 π 13 sin 2 π 13 sin 6 π 13 ) = cos 2 2 π 13 cos 2 6 π 13 sin 2 π 13 cos 2 π 13 sin 6 π 13 cos 6 π 13 = 1 4 ( cos 4 π 13 + 1 ) ( cos 12 π 13 + 1 ) 1 4 sin 4 π 13 sin 12 π 13 = 1 4 ( cos 4 π 13 cos 12 π 13 + cos 4 π 13 + cos 12 π 13 + 1 sin 4 π 13 sin 12 π 13 ) = 1 4 ( cos 16 π 13 + cos 4 π 13 + cos 12 π 13 + 1 ) = 1 4 ( cos 10 π 13 + cos 4 π 13 + cos 12 π 13 + 1 ) = 1 4 ( cos 2 π 13 + cos 4 π 13 + cos 6 π 13 + cos 8 π 13 + cos 10 π 13 + cos 12 π 13 ( cos 2 π 13 + cos 6 π 13 + cos 8 π 13 ) + 1 ) = 1 4 ( 1 2 13 1 4 + 1 ) [ Note 1 ] [ Note 2 ] = 3 13 16 \cos{\frac{2\pi}{13}} \cos{\frac{6\pi}{13}} \cos{\frac{8\pi}{13}} \\ = \cos{\frac{2 \pi}{13}} \cos{\frac{6\pi}{13}} \left( \cos{\frac{2\pi}{13}} \cos{\frac{6\pi}{13}} - \sin{ \frac{2\pi}{13}} \sin{\frac{6\pi}{13}} \right) \\ = \cos^2{\frac{2\pi}{13}} \cos^2{\frac {6\pi}{13}} - \sin{\frac{2\pi}{13}} \cos{\frac{2\pi}{13}} \sin{\frac{6\pi}{13}} \cos{\frac{6\pi}{13}} \\ = \frac{1}{4} \left( \cos{\frac{4\pi}{13}} + 1 \right) \left( \cos{\frac{12\pi}{13}} + 1 \right) - \frac{1}{4} \sin{\frac{4\pi}{13}} \sin{\frac{12\pi}{13}} \\ = \frac{1}{4} \left( \cos{\frac{4\pi}{13}} \cos{\frac{12\pi}{13}} + \cos{\frac{4\pi}{13}} + \cos{\frac{12\pi}{13}} + 1 - \sin{\frac{4\pi}{13}} \sin{\frac{12\pi}{13}} \right) \\ = \frac{1}{4} \left( \cos{\frac{\color{#D61F06}{16} \pi}{13}} + \cos{\frac{4\pi}{13}} + \cos{\frac{12\pi}{13}} + 1 \right) \\ = \frac{1}{4} \left( \cos{\frac{\color{#D61F06}{10} \pi}{13}} + \cos{\frac{4\pi}{13}} + \cos{\frac{12\pi}{13}} + 1 \right) \\ = \frac{1}{4} \left( \color{#3D99F6} {\cos{\frac{2\pi}{13}} + \cos{\frac{4\pi}{13}} + \cos{\frac{6\pi}{13}} + \cos{\frac{8\pi}{13}} + \cos{\frac{10\pi}{13}} + \cos{\frac{12\pi}{13}}} \\ \quad \quad - \left(\color{#20A900}{\cos{\frac{2\pi}{13}} + \cos{\frac{6\pi}{13}} + \cos{\frac{8\pi}{13}}} \right) + 1 \right) \\ = \frac{1}{4} \left( \color{#3D99F6}{- \frac{1}{2}} - \color{#20A900}{\frac{\sqrt{13}-1}{4}} + 1 \right) \quad \quad \color{#3D99F6}{[\text{Note 1}]} \color{#20A900}{[\text{Note 2}]} \\ = \boxed{\frac{3-\sqrt{13}}{16}}

Note 1: z 13 = e 2 π 13 i = 1 \color{#3D99F6}{\text{Note 1: }} z^{13} = e^{\frac{2\pi}{13}i} = 1 are the 13 t h ^{th} roots of unity. By Argand's diagram, we can see that: cos 2 π 13 + cos 4 π 13 + cos 6 π 13 + cos 8 π 13 + cos 10 π 13 + cos 12 π 13 = 1 2 \cos{\frac{2\pi}{13}} + \cos{\frac{4\pi}{13}} + \cos{\frac{6\pi}{13}} + \cos{\frac{8\pi}{13}} + \cos{\frac{10\pi}{13}} + \cos{\frac{12\pi}{13}} = -\frac{1}{2}

Note 2: \color{#20A900}{\text{Note 2: }} See solution of Part 1 .

@Alan Enrique Ontiveros Salazar Out of curiosity, what was your intended approach for these problems?

Calvin Lin Staff - 5 years, 11 months ago

Log in to reply

For part 1, I let a = cos 2 π 13 + cos 6 π 13 + cos 8 π 13 a=\cos{\frac{2\pi}{13}} + \cos{\frac{6\pi}{13}} + \cos{\frac{8\pi}{13}} and b = cos 4 π 13 + cos 10 π 13 + cos 12 π 13 b=\cos{\frac{4\pi}{13}} + \cos{\frac{10\pi}{13}} + \cos{\frac{12\pi}{13}} . Also, let w = e 2 π i 13 w=e^{\frac{2\pi i}{13}} , so using w k + w 13 k = 2 cos ( 2 π k 13 ) w^k+w^{13-k}=2\cos(\frac{2\pi k}{13}) , we get:

a = w + w 12 + w 3 + w 10 + w 4 + w 9 2 b = w 2 + w 11 + w 5 + w 8 + w 6 + w 7 2 a=\frac{w+w^{12}+w^3+w^{10}+w^4+w^9}{2} \\ b=\frac{w^2+w^{11}+w^5+w^8+w^6+w^7}{2} .

Then, I tried to find a + b a+b and a b ab , the first was easy using w + w 2 + w 3 + + w 12 = 1 w+w^2+w^3+\cdots+w^{12}=-1 :

a + b = 1 2 a+b=-\frac{1}{2}

But to find a b ab I expanded the whole product and used the fact that w 13 = 1 w^{13}=1 , and I ended with a b = 3 4 ab=-\frac{3}{4} .

Finally, by the fact that a > 0 a>0 and b < 0 b<0 , use Vieta's formulas to find that a = 1 + 13 4 a=\frac{-1+\sqrt{13}}{4} and b = 1 13 4 b=\frac{-1-\sqrt{13}}{4} .

For part 2, I only used the product to sum formulas and I ended with: 1 2 [ cos ( 8 π 13 ) + cos ( 4 π 13 ) + cos ( 10 π 13 ) + cos ( 6 π 13 ) + cos ( 14 π 13 ) + cos ( 2 π 13 ) ] \frac{1}{2}[\cos(\frac{8\pi}{13})+\cos(\frac{4\pi}{13})+\cos(\frac{10\pi}{13})+\cos(\frac{6\pi}{13})+\cos(\frac{14\pi}{13})+\cos(\frac{2\pi}{13})] , but cos ( 14 π 13 ) = cos ( 12 π 13 ) \cos(\frac{14\pi}{13})=\cos(\frac{12\pi}{13}) , and the fact that cos ( 2 π 13 ) + + cos ( 12 π 13 ) = 1 2 \cos(\frac{2\pi}{13})+\cdots+\cos(\frac{12\pi}{13})=-\frac{1}{2} , we get 1 4 -\frac{1}{4} .

For part 3, I followed a similar method, let a = cos ( 2 π 13 ) cos ( 6 π 13 ) cos ( 8 π 13 ) a=\cos(\frac{2\pi}{13})\cos(\frac{6\pi}{13})\cos(\frac{8\pi}{13}) and b = cos ( 4 π 13 ) cos ( 10 π 13 ) cos ( 12 π 13 ) b=\cos(\frac{4\pi}{13})\cos(\frac{10\pi}{13})\cos(\frac{12\pi}{13}) . Now, express them in terms of w w :

a = ( w + w 12 2 ) ( w 3 + w 10 2 ) ( w 4 + w 9 2 ) b = ( w 2 + w 11 2 ) ( w 5 + w 8 2 ) ( w 6 + w 7 2 ) a=(\frac{w+w^{12}}{2})(\frac{w^3+w^{10}}{2})(\frac{w^4+w^9}{2}) \\ b=(\frac{w^2+w^{11}}{2})(\frac{w^5+w^8}{2})(\frac{w^6+w^7}{2}) .

Expand them:

a = w 2 + w 5 + w 6 + w 7 + w 8 + w 11 + 2 8 b = w + w 3 + w 4 + w 9 + w 10 + w 12 + 2 8 a=\frac{w^2+w^5+w^6+w^7+w^8+w^{11}+2}{8} \\ b=\frac{w+w^3+w^4+w^9+w^{10}+w^{12}+2}{8}

With this, find a + b = 3 8 a+b=\frac{3}{8} and a b ab , which is a little messy product: a b = 1 64 ab=-\frac{1}{64} .

Finally, use Vieta's formulas with the fact that this time a < 0 a<0 and b > 0 b>0 :

a = 3 13 16 a=\frac{3-\sqrt{13}}{16} and b = 3 + 13 16 b=\frac{3+\sqrt{13}}{16}

These kind of problems are very interesting because when you try to find some expressions involving cos ( 2 π k n ) \cos(\frac{2\pi k}{n}) for some prime n n , you, for some reason, find expressions with n \sqrt{n} in them.

Also, with this we can prove that the polynomial P ( x ) = x 6 + 1 2 x 5 5 4 x 4 1 2 x 3 + 3 8 x 2 + 3 32 x 1 64 P(x)=x^6+\frac{1}{2}x^5-\frac{5}{4}x^4-\frac{1}{2}x^3+\frac{3}{8}x^2+\frac{3}{32}x-\frac{1}{64} , which has roots cos ( 2 π k 13 ) \cos(\frac{2\pi k}{13}) for k k from 1 1 to 6 6 , can be factored like this:

( x 3 + 1 13 4 x 2 1 4 x 3 13 16 ) ( x 3 + 1 + 13 4 x 2 1 4 x 3 + 13 16 ) (x^3+\frac{1-\sqrt{13}}{4}x^2-\frac{1}{4}x-\frac{3-\sqrt{13}}{16})(x^3+\frac{1+\sqrt{13}}{4}x^2-\frac{1}{4}x-\frac{3+\sqrt{13}}{16})

Alan Enrique Ontiveros Salazar - 5 years, 11 months ago

Log in to reply

Could you add these as solutions to the individual parts? Thanks!

Calvin Lin Staff - 5 years, 11 months ago

Log in to reply

@Calvin Lin Of course!, I will be posting them soon.

Alan Enrique Ontiveros Salazar - 5 years, 11 months ago

I don't understand how trigonometry can be molded to form such beautiful solutions for such brilliant problems.

Vighnesh Raut - 3 years, 5 months ago

Also, just wandering, will it be possible to find the values of the individual terms?

Vighnesh Raut - 3 years, 5 months ago

Log in to reply

Yes, using the Chebyshev polynomials of the first kind, we can express cos ( n θ ) = T n ( cos θ ) \cos (n\theta) = T_n (\cos \theta) . For example, T 1 ( cos θ ) = cos θ T_1 (\cos \theta) = \cos \theta , T 2 ( cos θ ) = 2 cos 2 θ 1 T_2(\cos \theta) = 2\cos^2 \theta - 1 , T 3 ( cos θ ) = 4 cos 3 θ 3 cos θ T_3(\cos \theta) = 4\cos^3 \theta - 3\cos \theta , \cdots .

Chew-Seong Cheong - 3 years, 5 months ago
Gari Chua
Jun 24, 2015

From Part 1 and Part 2 ,

cos 2 π 13 + cos 6 π 13 + cos 8 π 13 = 13 1 4 \cos \frac{2\pi}{13} + \cos \frac{6\pi}{13} + \cos \frac{8\pi}{13} =\frac{\sqrt{13}-1}{4}

and

cos 2 π 13 cos 6 π 13 + cos 6 π 13 cos 8 π 13 + cos 8 π 13 cos 2 π 13 = 1 4 \cos \frac{2\pi}{13} \cos \frac{6\pi}{13} + \cos \frac{6\pi}{13} \cos \frac{8\pi}{13} + \cos \frac{8\pi}{13} \cos \frac{2\pi}{13} = - \frac{1}{4} .

We also know that for any x , y , x, y, and z z ,

x 3 + y 3 + z 3 3 x y z = ( x + y + z ) ( ( x + y + z ) 2 3 ( x y + y z + z x ) ) x^3+y^3+z^3-3xyz = (x+y+z)((x+y+z)^2-3(xy+yz+zx)) .

Thus, letting { x , y , z } = { cos 2 π 13 , cos 6 π 13 , cos 8 π 13 } \{x,y,z\}=\{\cos \frac{2\pi}{13}, \cos \frac{6\pi}{13}, \cos \frac{8\pi}{13} \} , and substituting all above values, we have

cos 3 ( 2 π 13 ) + cos 3 ( 6 π 13 ) + cos 3 ( cos 8 π 13 ) 3 cos 2 π 13 cos 6 π 13 cos 8 π 13 = 7 13 13 16 \cos ^3 (\frac{2\pi}{13}) + \cos ^3 (\frac{6\pi}{13}) + \cos ^3 (\cos \frac{8\pi}{13} ) -3\cos \frac{2\pi}{13} \cos \frac{6\pi}{13}\cos \frac{8\pi}{13} = \frac{7\sqrt{13} -13}{16} .

Also, note that from the triple-angle formula, cos 3 θ = 4 cos 3 θ 3 cos θ \cos 3\theta = 4\cos ^3 \theta -3\cos \theta , we can get an expression for cos 3 θ \cos ^3 \theta :

cos 3 θ = 1 4 ( cos 3 θ + 3 cos θ ) \cos ^3 \theta = \frac{1}{4} (\cos 3\theta + 3\cos \theta) .

Thus,

cos 3 ( 2 π 13 ) + cos 3 ( 6 π 13 ) + cos 3 ( cos 8 π 13 ) = 1 4 ( cos 6 π 13 + cos 18 π 13 + cos 24 π 13 \cos ^3 (\frac{2\pi}{13}) + \cos ^3 (\frac{6\pi}{13}) + \cos ^3 (\cos \frac{8\pi}{13} ) = \frac{1}{4} (\cos \frac{6\pi}{13} + \cos \frac{18\pi}{13} + \cos \frac{24\pi}{13}

+ 3 ( cos 2 π 13 + cos 6 π 13 + cos 8 π 13 ) ) + 3(\cos \frac{2\pi}{13} + \cos \frac{6\pi}{13} + \cos \frac{8\pi}{13}))

= 1 4 ( cos 6 π 13 + cos 8 π 13 + cos 2 π 13 + 3 ( cos 2 π 13 + cos 6 π 13 + cos 8 π 13 ) ) = \frac {1}{4} ( \cos \frac{6\pi}{13} + \cos \frac{8\pi}{13} + \cos \frac{2\pi}{13} + 3(\cos \frac{2\pi}{13} + \cos \frac{6\pi}{13} + \cos \frac{8\pi}{13}))

= cos 2 π 13 + cos 6 π 13 + cos 8 π 13 = 13 1 4 =\cos \frac{2\pi}{13} + \cos \frac{6\pi}{13} + \cos \frac{8\pi}{13} = \frac{\sqrt{13}-1}{4} .

So,

cos 2 π 13 cos 6 π 13 cos 8 π 13 = 1 3 ( 13 1 4 7 13 13 16 ) \cos \frac{2\pi}{13} \cos \frac{6\pi}{13}\cos \frac{8\pi}{13} = \frac{1}{3} (\frac{\sqrt{13}-1}{4} - \frac{7\sqrt{13} -13}{16})

= 3 13 16 =\boxed{\frac{3-\sqrt{13}}{16}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...